亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty-aware visually-attentive navigation using deep neural networks

稳健性(进化) 人工智能 机器人 计算机科学 人工神经网络 计算机视觉 避碰 碰撞 计算机安全 生物化学 基因 化学
作者
Huan Nguyen,Rasmus Eckholdt Andersen,Evangelos Boukas,Kostas Alexis
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:43 (6): 840-872 被引量:3
标识
DOI:10.1177/02783649231218720
摘要

Autonomous navigation and information gathering in challenging environments are demanding since the robot’s sensors may be susceptible to non-negligible noise, its localization and mapping may be subject to significant uncertainty and drift, and performing collision-checking or evaluating utility functions using a map often requires high computational costs. We propose a learning-based method to efficiently tackle this problem without relying on a map of the environment or the robot’s position. Our method utilizes a Collision Prediction Network (CPN) for predicting the collision scores of a set of action sequences, and an Information gain Prediction Network (IPN) for estimating their associated information gain. Both networks assume access to a) the depth image (CPN) or the depth image and the detection mask from any visual method (IPN), b) the robot’s partial state (including its linear velocities, z-axis angular velocity, and roll/pitch angles), and c) a library of action sequences. Specifically, the CPN accounts for the estimation uncertainty of the robot’s partial state and the neural network’s epistemic uncertainty by using the Unscented Transform and an ensemble of neural networks. The outputs of the networks are combined with a goal vector to identify the next-best-action sequence. Simulation studies demonstrate the method’s robustness against noisy robot velocity estimates and depth images, alongside its advantages compared to state-of-the-art methods and baselines in (visually-attentive) navigation tasks. Lastly, multiple real-world experiments are presented, including safe flights at 2.5 m/s in a cluttered corridor, and missions inside a dense forest alongside visually-attentive navigation in industrial and university buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑面包完成签到 ,获得积分10
8秒前
26秒前
石头完成签到,获得积分10
26秒前
34秒前
46秒前
47秒前
小付发布了新的文献求助10
54秒前
研友_VZG7GZ应助小付采纳,获得10
1分钟前
1分钟前
Snieno发布了新的文献求助10
1分钟前
1分钟前
千程完成签到,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助Celeste_J采纳,获得20
1分钟前
1分钟前
1分钟前
Celeste_J发布了新的文献求助20
1分钟前
NexusExplorer应助千程采纳,获得10
1分钟前
小蘑菇应助科研小趴菜采纳,获得10
1分钟前
2分钟前
研友_ndDGVn完成签到 ,获得积分10
2分钟前
Celeste_J完成签到,获得积分20
2分钟前
2分钟前
Cedric发布了新的文献求助30
2分钟前
打打应助科研通管家采纳,获得10
3分钟前
3分钟前
Hyp完成签到 ,获得积分10
3分钟前
4分钟前
楠楠2001完成签到 ,获得积分10
4分钟前
ling2001完成签到,获得积分10
4分钟前
4分钟前
丘比特应助Ernie采纳,获得10
4分钟前
5分钟前
5分钟前
甜美的秋尽完成签到,获得积分10
5分钟前
Ernie发布了新的文献求助10
5分钟前
jokerhoney完成签到,获得积分10
5分钟前
5分钟前
kaki发布了新的文献求助10
5分钟前
chenlc971125完成签到 ,获得积分10
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343966
关于积分的说明 10318137
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679619
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323