A refined deep-learning-based algorithm for harmful-algal-bloom remote-sensing recognition using Noctiluca scintillans algal bloom as an example

布鲁姆 水华 海洋学 卷积神经网络 深度学习 像素 人工智能 算法 模式识别(心理学) 计算机科学 遥感 生物 生态学 地质学 浮游植物 地理 营养物
作者
Rongjie Liu,Binge Cui,Wenwen Dong,Xi Fang,Yanfang Xiao,Xin Zhao,Tingwei Cui,Yi Ma,Quanbin Wang
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:467: 133721-133721 被引量:9
标识
DOI:10.1016/j.jhazmat.2024.133721
摘要

Harmful algal blooms (HABs) are challenging to recognize because of their striped and uneven biomass distributions. To address this issue, a refined deep-learning algorithm termed HAB-Ne was developed for the recognition of HABs in GF-1 Wide Field of View (WFV) images using Noctiluca scintillans algal bloom as an example. First, a pretrained image super-resolution model was integrated to improve the spatial resolution of the GF-1 WFV images and minimize the impact of mixed pixels caused by the strip distribution. Side-window convolution was also explored to enhance the edge features of HABs and minimize the effects of uneven biomass distribution. In addition, a convolutional encoder-decoder network was constructed for threshold-free HAB recognition to address the dependence on thresholds in existing methods. HAB-Net effectively recognized HABs from GF-1 WFV images, achieving an average precision of 90.1% and an F1-score of 0.86. HAB-Net showed more fine-grained recognition results than those of existing methods, with over 4% improvement in the F1-Score, especially in the marginal areas of HAB distribution. The algorithm demonstrated its effectiveness in recognizing HABs in different marine environments, such as the Yellow Sea, East China Sea, and northern Vietnam. Additionally, the algorithm was proven suitable for detecting the macroalga Sargassum. This study demonstrates the potential of deep-learning-based fine-grained recognition of HABs, which can be extended to the recognition of other fine-scale and strip-distributed objects, such as oil spills and Ulva prolifera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助歼击机88采纳,获得10
1秒前
夜骐完成签到,获得积分10
1秒前
英俊的铭应助李喜喜采纳,获得10
1秒前
几携完成签到 ,获得积分10
1秒前
小马甲应助一方通行采纳,获得10
2秒前
jiasen发布了新的文献求助10
2秒前
丁牛青发布了新的文献求助10
3秒前
西卡比巴卜完成签到,获得积分10
5秒前
CX完成签到 ,获得积分0
7秒前
Owen应助XNM采纳,获得10
9秒前
Jasper应助星曳采纳,获得10
10秒前
10秒前
我是老大应助蔓越莓麻薯采纳,获得10
11秒前
oyk发布了新的文献求助10
11秒前
我不到啊完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
田様应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
丁牛青完成签到,获得积分10
18秒前
科目三应助oyk采纳,获得10
19秒前
充电宝应助科研小白采纳,获得10
20秒前
21秒前
lyh2234发布了新的文献求助10
22秒前
jiasen完成签到,获得积分10
22秒前
23秒前
24秒前
无辜茉莉发布了新的文献求助10
25秒前
27秒前
星曳完成签到,获得积分10
27秒前
28秒前
su完成签到 ,获得积分10
28秒前
pistachio完成签到 ,获得积分10
29秒前
小跳蚤发布了新的文献求助10
29秒前
小小小新发布了新的文献求助10
29秒前
科研通AI2S应助lyh2234采纳,获得10
31秒前
旧安江人发布了新的文献求助10
31秒前
无花果应助kezhang采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327403
关于积分的说明 10230923
捐赠科研通 3042284
什么是DOI,文献DOI怎么找? 1669963
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804