Data driven computational design of stable oxygen evolution catalysts by DFT and machine learning: Promising electrocatalysts

催化作用 析氧 密度泛函理论 电化学 材料科学 过渡金属 纳米技术 化学 计算机科学 组合化学 计算化学 物理化学 有机化学 电极
作者
Hwanyeol Park,Yunseok Kim,Seulwon Choi,Ho Jun Kim
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:91: 645-655 被引量:15
标识
DOI:10.1016/j.jechem.2023.12.048
摘要

The revolutionary development of machine learning (ML), data science, and analytics, coupled with its application in material science, stands as a significant milestone of the scientific community over the last decade. Investigating active, stable, and cost-efficient catalysts is crucial for oxygen evolution reaction owing to the significance in a range of electrochemical energy conversion processes. In this work, we have demonstrated an efficient approach of high-throughput screening to find stable transition metal oxides under acid condition for high-performance oxygen evolution reaction (OER) catalysts through density functional theory (DFT) calculation and a machine learning algorithm. A methodology utilizing both the Materials Project database and DFT calculations was introduced to assess the acid stability under specific reaction conditions. Building upon this, OER catalytic activity of acid-stable materials was examined, highlighting potential OER catalysts that meet the required properties. We identified IrO2, Fe(SbO3)2, Co(SbO3)2, Ni(SbO3)2, FeSbO4, Fe(SbO3)4, MoWO6, TiSnO4, CoSbO4, and Ti(WO4)2 as promising catalysts, several of which have already been experimentally discovered for their robust OER performance, while others are novel for experimental exploration, thereby broadening the chemical scope for efficient OER electrocatalysts. Descriptors of the bond length of TM–O and the first ionization energy were used to unveil the OER activity origin. From the calculated results, guidance has been derived to effectively execute advanced high-throughput screenings for the discovery of catalysts with favorable properties. Furthermore, the intrinsic correlation between catalytic performance and various atomic and structural factors was elucidated using the ML algorithm. Through these approaches, we not only streamline the choice of the promising electrocatalysts but also offer insights for the design of varied catalyst models and the discovery of superior catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李物发布了新的文献求助20
刚刚
丘比特应助ibigbird采纳,获得10
2秒前
s1ght发布了新的文献求助10
3秒前
12秒前
hihi完成签到,获得积分10
13秒前
13秒前
所所应助第八大洋采纳,获得10
14秒前
ibigbird发布了新的文献求助10
17秒前
Aaron完成签到,获得积分10
19秒前
星辰大海应助科研通管家采纳,获得10
20秒前
明亮的代灵完成签到 ,获得积分10
20秒前
25秒前
胖头鱼666发布了新的文献求助10
27秒前
bkagyin应助s1ght采纳,获得10
29秒前
桃博完成签到,获得积分10
29秒前
29秒前
科研小白完成签到,获得积分10
32秒前
Jasper应助咖喱鸡采纳,获得10
33秒前
周晏平发布了新的文献求助30
34秒前
37秒前
李爱国应助cloudyick采纳,获得10
38秒前
七喜完成签到 ,获得积分10
39秒前
40秒前
44秒前
44秒前
45秒前
45秒前
舒心的耷完成签到,获得积分10
50秒前
咖喱鸡发布了新的文献求助10
50秒前
WhY发布了新的文献求助10
51秒前
53秒前
第四季完成签到 ,获得积分10
54秒前
健忘荧完成签到 ,获得积分10
55秒前
咖喱鸡完成签到,获得积分10
57秒前
叶宇豪完成签到,获得积分10
57秒前
sxp1031发布了新的文献求助10
1分钟前
pluto应助Vlory采纳,获得20
1分钟前
一直很安静完成签到 ,获得积分10
1分钟前
CYH完成签到,获得积分10
1分钟前
何时完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779678
求助须知:如何正确求助?哪些是违规求助? 3325145
关于积分的说明 10221611
捐赠科研通 3040246
什么是DOI,文献DOI怎么找? 1668703
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535