Data driven computational design of stable oxygen evolution catalysts by DFT and machine learning: Promising electrocatalysts

催化作用 析氧 密度泛函理论 电化学 材料科学 过渡金属 纳米技术 化学 计算机科学 组合化学 计算化学 物理化学 有机化学 电极
作者
Hwanyeol Park,Yunseok Kim,Seulwon Choi,Ho Jun Kim
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:91: 645-655 被引量:26
标识
DOI:10.1016/j.jechem.2023.12.048
摘要

The revolutionary development of machine learning (ML), data science, and analytics, coupled with its application in material science, stands as a significant milestone of the scientific community over the last decade. Investigating active, stable, and cost-efficient catalysts is crucial for oxygen evolution reaction owing to the significance in a range of electrochemical energy conversion processes. In this work, we have demonstrated an efficient approach of high-throughput screening to find stable transition metal oxides under acid condition for high-performance oxygen evolution reaction (OER) catalysts through density functional theory (DFT) calculation and a machine learning algorithm. A methodology utilizing both the Materials Project database and DFT calculations was introduced to assess the acid stability under specific reaction conditions. Building upon this, OER catalytic activity of acid-stable materials was examined, highlighting potential OER catalysts that meet the required properties. We identified IrO2, Fe(SbO3)2, Co(SbO3)2, Ni(SbO3)2, FeSbO4, Fe(SbO3)4, MoWO6, TiSnO4, CoSbO4, and Ti(WO4)2 as promising catalysts, several of which have already been experimentally discovered for their robust OER performance, while others are novel for experimental exploration, thereby broadening the chemical scope for efficient OER electrocatalysts. Descriptors of the bond length of TM–O and the first ionization energy were used to unveil the OER activity origin. From the calculated results, guidance has been derived to effectively execute advanced high-throughput screenings for the discovery of catalysts with favorable properties. Furthermore, the intrinsic correlation between catalytic performance and various atomic and structural factors was elucidated using the ML algorithm. Through these approaches, we not only streamline the choice of the promising electrocatalysts but also offer insights for the design of varied catalyst models and the discovery of superior catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Ava应助风清扬采纳,获得10
5秒前
6秒前
7秒前
懒羊羊发布了新的文献求助10
7秒前
青木关注了科研通微信公众号
8秒前
量子星尘发布了新的文献求助50
9秒前
10秒前
陈杰发布了新的文献求助10
11秒前
11秒前
11秒前
小月完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
科研通AI2S应助反方向的钟采纳,获得10
13秒前
14秒前
SST发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
亻圭发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
SuperYing发布了新的文献求助10
16秒前
戴维少尉发布了新的文献求助10
18秒前
郭菱香发布了新的文献求助10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
ghostR应助科研通管家采纳,获得30
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
G哟X发布了新的文献求助10
19秒前
tsuki完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663136
求助须知:如何正确求助?哪些是违规求助? 4045157
关于积分的说明 12512270
捐赠科研通 3737545
什么是DOI,文献DOI怎么找? 2063940
邀请新用户注册赠送积分活动 1093502
科研通“疑难数据库(出版商)”最低求助积分说明 974218