Electrolytic Capacitor Surface Defect Detection Based on Deep Convolution Neural Network

卷积(计算机科学) 计算机科学 人工神经网络 人工智能 卷积神经网络 材料科学 模式识别(心理学)
作者
Haijian Wang,Mo Han,Shun Lu,Xuemei Zhao
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:36 (2): 101935-101935
标识
DOI:10.1016/j.jksuci.2024.101935
摘要

The existing methods for detecting surface defects in electrolytic capacitors are typically based on conventional machine vision, with limited feature extraction capabilities, poor versatility, slow detection speed, and the inability to achieve accurate and real-time defect detection. In this study, a real-time object detection algorithm based on an improved single shot multibox detector (SSD) is proposed to achieve omnidirectional surface defect detection of electrolytic capacitors. First, an electrolytic capacitor surface image acquisition device was established to capture omnidirectional surface images of the capacitors, and an electrolytic capacitor surface defect dataset was created. Next, the visual geometry group (VGG)-16 network structure was replaced with the MobileNetv2 network structure, effectively reducing the model’s parameter count and improving inference speed. Moreover, the Multibox Loss function was replaced with the Focal Loss function to increase the model’s attention to difficult-to-classify samples and improve model accuracy. Additionally, a transfer learning network model was designed to apply the model to electrolytic capacitors of different colors using small sample learning. Finally, the performance of the improved network model was tested on a dataset of electrolytic capacitor surface defects. The experimental results demonstrate that the parameters quantity of improved model is 3.50M, the mAP value reaches 92.67%, which is improved by 2.54%, and the Macro-F1 value reaches 92.15%, which is 11.32% higher than that before improvement. Thus, the proposed improved SSD model provides a theoretical basis and technical prerequisites for automated and intelligent surface defect detection in electrolytic capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丁发布了新的文献求助10
1秒前
2秒前
充电宝应助阿治采纳,获得10
2秒前
CR7完成签到,获得积分10
3秒前
3秒前
个性凡儿发布了新的文献求助10
3秒前
时尚的初柔完成签到,获得积分10
4秒前
万能图书馆应助wcy采纳,获得10
4秒前
gege发布了新的文献求助10
4秒前
66完成签到,获得积分10
5秒前
Albert完成签到,获得积分10
5秒前
伶俐悟空发布了新的文献求助20
5秒前
5秒前
星辰大海应助只与你采纳,获得10
6秒前
6秒前
7秒前
天天向上发布了新的文献求助10
7秒前
花间盏完成签到 ,获得积分10
7秒前
jianguo完成签到,获得积分10
8秒前
久念完成签到,获得积分10
8秒前
Lgh完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助haorui采纳,获得10
10秒前
日落发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
chan完成签到,获得积分10
11秒前
tuntunliu完成签到,获得积分10
11秒前
小白发布了新的文献求助10
11秒前
热心诺言发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
吴媛媛完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
liuguohua126发布了新的文献求助10
14秒前
隐形曼青应助materials_采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730