Machine Learning–Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels

医学 冲程(发动机) 缺血性中风 黄嘌呤氧化酶 内科学 脑缺血 心脏病学 缺血 机械工程 生物化学 化学 工程类
作者
Xin Chen,Qingping Zeng,Luhang Tao,Jing Yuan,Jing Hang,Guangyu Lu,Jun Shao,Yuping Li,Hailong Yu
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:184: e695-e707 被引量:1
标识
DOI:10.1016/j.wneu.2024.02.014
摘要

Early prediction of the onset, progression and prognosis of acute ischemic stroke (AIS) is helpful for treatment decision-making and proactive management. Although several biomarkers have been found to predict the progression and prognosis of AIS, these biomarkers have not been widely used in routine clinical practice. Xanthine oxidase (XO) is a form of xanthine oxidoreductase (XOR), which is widespread in various organs of the human body and plays an important role in redox reactions and ischemia‒reperfusion injury. Our previous studies have shown that serum XO levels on admission have certain clinical predictive value for AIS. The purpose of this study was to utilize serum XO levels and clinical data to establish machine learning models for predicting the onset, progression, and prognosis of AIS. We enrolled 328 consecutive patients with AIS and 107 healthy controls from October 2020 to September 2021. Serum XO levels and stroke-related clinical data were collected. We established 5 machine learning models—the logistic regression (LR), support vector machine (SVM), decision tree, random forest, and K-nearest neighbor (KNN) models—to predict the onset, progression, and prognosis of AIS. The area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, negative predictive value, and positive predictive value were used to evaluate the predictive performance of each model. Among the 5 machine learning models predicting AIS onset, the AUROC values of 4 prediction models were over 0.7, while that of the KNN model was lower (AUROC = 0.6708, 95% CI 0.576–0.765). The LR model showed the best AUROC value (AUROC = 0.9586, 95% CI 0.927–0.991). Although the 5 machine learning models showed relatively poor predictive value for the progression of AIS (all AUROCs <0.7), the LR model still showed the highest AUROC value (AUROC = 0.6543, 95% CI 0.453–0.856). We compared the value of 5 machine learning models in predicting the prognosis of AIS, and the LR model showed the best predictive value (AUROC = 0.8124, 95% CI 0.715–0.910). The tested machine learning models based on serum levels of XO could predict the onset and prognosis of AIS. Among the 5 machine learning models, we found that the LR model showed the best predictive performance. Machine learning algorithms improve accuracy in the early diagnosis of AIS and can be used to make treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槑槑完成签到,获得积分10
刚刚
生动新柔发布了新的文献求助10
1秒前
曹超国发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
星辰大海应助zjy采纳,获得10
3秒前
5秒前
YSHZ发布了新的文献求助10
5秒前
LZhao01发布了新的文献求助30
5秒前
槑槑发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
9秒前
生动新柔完成签到,获得积分10
9秒前
坦率冬瓜发布了新的文献求助10
9秒前
又活了一天完成签到 ,获得积分10
10秒前
10秒前
温婉发布了新的文献求助10
10秒前
lan199623完成签到,获得积分10
10秒前
11秒前
xxx发布了新的文献求助10
11秒前
CNSSCI发布了新的文献求助10
11秒前
Jerry发布了新的文献求助20
12秒前
12秒前
科目三应助槑槑采纳,获得10
14秒前
14秒前
rrrrrrry发布了新的文献求助10
14秒前
Binbin发布了新的文献求助10
15秒前
15秒前
Taro完成签到 ,获得积分10
18秒前
芋泥波波完成签到,获得积分10
18秒前
wangyanwxy发布了新的文献求助10
19秒前
19秒前
ABBYTHU18完成签到,获得积分10
19秒前
小Q啊啾发布了新的文献求助10
20秒前
22秒前
任大师兄给任大师兄的求助进行了留言
23秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3879875
求助须知:如何正确求助?哪些是违规求助? 3422212
关于积分的说明 10728301
捐赠科研通 3146987
什么是DOI,文献DOI怎么找? 1736245
邀请新用户注册赠送积分活动 838247
科研通“疑难数据库(出版商)”最低求助积分说明 783704