Point-level feature learning based on vision transformer for occluded person re-identification

人工智能 判别式 计算机科学 变压器 计算机视觉 模式识别(心理学) 特征(语言学) 鉴定(生物学) 特征匹配 特征提取 工程类 电压 语言学 哲学 电气工程 植物 生物
作者
Hua Gao,Chenchen Hu,Guang Han,Jiafa Mao,Wei Huang,Qiu Guan
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:143: 104929-104929 被引量:4
标识
DOI:10.1016/j.imavis.2024.104929
摘要

Person re-identification is challenging due to the presence of variations in pose and occlusion, which significantly impact the matching of visual features across different camera views and pose considerable difficulty for accurate person re-identification. This paper proposes a novel method for occluded person re-identification by introducing point-level feature learning based on vision transformers. Our approach utilizes a pose estimator to detect the keypoints of the human body and employs these points to locate intermediate features. These intermediate features of keypoints are input to a pose-based transformer branch to learn point-level features. Then, we design a part-based transformer branch to learn part-level features that capture visual features of different image parts, further enhancing the discriminative power of the learned features. Additionally, we employ a global branch to learn the global-level feature by treating the person's image as a single entity. Finally, we integrate point-level, part-level, and global-level features to represent a person's features. The experimental results on occluded and partial person re-identification datasets demonstrate the effectiveness of our proposed approach in improving re-identification. Our approach shows potential for improving person re-identification in scenarios with occlusion and pose variations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xinxinbaby发布了新的文献求助10
1秒前
lanxin关注了科研通微信公众号
2秒前
2秒前
3秒前
科研通AI5应助ZRQ采纳,获得10
4秒前
yy发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
8秒前
叶楠发布了新的文献求助10
9秒前
10秒前
10秒前
高高的笑柳完成签到 ,获得积分10
10秒前
Frank发布了新的文献求助10
12秒前
13秒前
精明曼冬完成签到,获得积分20
14秒前
14秒前
腼腆的武发布了新的文献求助10
15秒前
完美世界应助Hh采纳,获得10
16秒前
拾光完成签到,获得积分10
17秒前
长情的涔完成签到 ,获得积分10
17秒前
dongdong完成签到 ,获得积分10
20秒前
子爵木完成签到 ,获得积分10
20秒前
20秒前
小二郎应助lzj采纳,获得10
22秒前
英姑应助lanxin采纳,获得10
22秒前
23秒前
23秒前
领导范儿应助腼腆的武采纳,获得10
24秒前
JamesPei应助LL采纳,获得10
24秒前
SYLH应助不见高山采纳,获得10
26秒前
科研通AI5应助NSGB采纳,获得10
26秒前
薛定谔的猫完成签到,获得积分10
27秒前
27秒前
西红柿呀完成签到,获得积分10
27秒前
乐开欣完成签到 ,获得积分10
29秒前
29秒前
耶豆发布了新的文献求助10
29秒前
30秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867305
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664362
捐赠科研通 3133875
什么是DOI,文献DOI怎么找? 1728505
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517