掺杂剂
材料科学
钙钛矿(结构)
氧化物
化学物理
金属
空间电荷
钝化
静电学
表面电荷
化学工程
纳米技术
兴奋剂
物理化学
光电子学
化学
冶金
电子
物理
量子力学
图层(电子)
工程类
作者
Moritz L. Weber,Břetislav Šmíd,U. Breuer,Marc‐André Rose,Norbert H. Menzler,Regina Dittmann,Rainer Waser,Olivier Guillon,Felix Gunkel,Christian Lenser
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2024-01-02
卷期号:23 (3): 406-413
被引量:12
标识
DOI:10.1038/s41563-023-01743-6
摘要
Abstract Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid–gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides. Here we reveal that the nature of the surface–dopant interaction is the main determining factor for the exsolution kinetics of nickel in SrTi 0.9 Nb 0.05 Ni 0.05 O 3– δ . The electrostatic interaction of dopants with surface space charge regions forming upon thermal oxidation results in strong surface passivation, which manifests in a retarded exsolution response. We furthermore demonstrate the controllability of the exsolution response via engineering of the perovskite surface chemistry. Our findings indicate that tailoring the electrostatic gradients at the perovskite surface is an essential step to improve exsolution-type materials in catalytic converters.
科研通智能强力驱动
Strongly Powered by AbleSci AI