Formation Path Planning for Collaborative Autonomous Underwater Vehicles Based on Consensus-Sparrow Search Algorithm

运动规划 计算机科学 路径(计算) 任意角度路径规划 数学优化 避障 地形 障碍物 分布式计算 算法 人工智能 移动机器人 机器人 数学 生物 程序设计语言 法学 生态学 政治学
作者
Jie Zhang,Dugui Chen,Guangjie Han,Yujie Qian
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 13810-13823 被引量:12
标识
DOI:10.1109/jiot.2023.3340432
摘要

Formation path planning of autonomous underwater vehicles (AUVs) entails establishing optimal collision-free routes over challenging underwater terrain while maintaining state coherence to preserve an intended formation, and path planning techniques have been the subject of significant study over the last decade, with swarm intelligence algorithms such as the sparrow search algorithm (SSA) being among the most commonly employed. However, the algorithms typically are constrained by the imbalanced adjustment between local development and global exploration, which reduces the optimization capability, and they are relatively understudied for the formation movement issues. Accordingly, this paper proposes a consensus-SSA based formation path planning (CSFPP) method, which applies an improved SSA for planning an optimal path, and then incorporates the path into a consensus algorithm that introduces an artificial potential field (APF) to enable collaborative formation movement. In the path planning phrase, the CSFPP employs an improved SSA which applies the golden search optimization (GSO) and an adaptive iteration approach to adjust the local development and global exploration in order to improve the overall optimization performance. Then in the formation control phrase, the CSFPP introduces a virtual point scheme for APF-based obstacle avoidance in order to navigate an AUV formation in an obstacle environment while maintaining the formation shape controlled by a consensus algorithm. The superiority of the proposed path planning capability is demonstrated by comparing the convergence performance of the improved SSA with the recent contributions; and simulations of formation movement in underwater space verify the feasibility of the proposed formation control method in the obstacle environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忠诚卫士发布了新的文献求助10
刚刚
李娇发布了新的文献求助30
1秒前
Rookie发布了新的文献求助10
1秒前
orixero应助动人的代芹采纳,获得10
2秒前
2秒前
2秒前
碧蓝的弱完成签到,获得积分10
3秒前
香蕉觅云应助西门不二采纳,获得10
3秒前
英俊的铭应助CT民工采纳,获得10
3秒前
李开心发布了新的文献求助10
4秒前
乔晶完成签到,获得积分10
4秒前
CodeCraft应助cy采纳,获得10
5秒前
maodou完成签到,获得积分10
6秒前
jiahuilai完成签到 ,获得积分10
6秒前
Bizi发布了新的文献求助10
7秒前
CT民工发布了新的文献求助10
8秒前
畅快焦发布了新的文献求助10
9秒前
9秒前
满天星完成签到,获得积分10
9秒前
雨柏完成签到 ,获得积分10
10秒前
10秒前
10秒前
hzw83完成签到 ,获得积分10
11秒前
孔雨珍完成签到,获得积分10
11秒前
12秒前
坚强志泽发布了新的文献求助10
13秒前
13秒前
南黎发布了新的文献求助10
13秒前
阿旭发布了新的文献求助10
14秒前
赘婿应助3333采纳,获得10
14秒前
14秒前
cy完成签到,获得积分20
15秒前
15秒前
猎空发布了新的文献求助10
16秒前
16秒前
亚当完成签到 ,获得积分10
17秒前
17秒前
17秒前
cy发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4226190
求助须知:如何正确求助?哪些是违规求助? 3759506
关于积分的说明 11817967
捐赠科研通 3420816
什么是DOI,文献DOI怎么找? 1877492
邀请新用户注册赠送积分活动 930786
科研通“疑难数据库(出版商)”最低求助积分说明 838785