Decoding chronic rhinosinusitis: A metabolomics‐based approach

代谢组学 慢性鼻-鼻窦炎 疾病 生物信息学 医学 梅德林 相关性(法律) 生物 病理 内科学 生物化学 政治学 法学
作者
Xinru Gong,Yijie Fu,Lei Zhou,Aiming Wei,Chongsheng Pan,Tianmin Zhu,Hui Li
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
卷期号:14 (4): 828-840 被引量:2
标识
DOI:10.1002/alr.23331
摘要

Abstract Background Chronic rhinosinusitis (CRS) is a common and intractable disease in otorhinolaryngology, laying a heavy burden on healthcare systems. The worldwide researchers are making efforts to find solutions to this disease. Metabolomics has recently gained more and more traction, and might become a promising tool to unravel the complexity of CRS. This paper provides an overview of current studies on the metabolomics of various CRS subtypes. Methods We conducted a comprehensive literature search in PubMed, Web of Science, EMBASE, Google Scholar, and Cochrane Library, up to May 25, 2023. Search strategies incorporated key terms such as “chronic rhinosinusitis” and “metabolomics” with relevant synonyms and MeSH terms. Titles and abstracts of 86 screened articles were assessed for relevance to CRS and metabolomics. Methodological robustness, data reliability, and relevance were considered for shortlisted articles. Results After the refined process, a total of 26 articles were included in this study and sorted out by research themes, methodology and pivotal discoveries. These included studies identified the metabolic pathways and markers related to the pathophysiology in each subtype of CRS. Conclusions Metabolomics helps to shed light on the complexity of CRS. The mentioned findings highlight the importance of specific metabolic pathways and markers in understanding the pathophysiology of CRS. Despite that, challenges and future directions in metabolomics research for CRS would be worth being further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助欢_211采纳,获得10
2秒前
2秒前
JayL完成签到,获得积分10
2秒前
你猜完成签到,获得积分20
4秒前
6秒前
马丽强2733256给马丽强2733256的求助进行了留言
6秒前
zy发布了新的文献求助10
6秒前
7秒前
7秒前
赘婿应助自由书文采纳,获得10
8秒前
yeyi关注了科研通微信公众号
8秒前
9秒前
10秒前
初学者完成签到,获得积分10
10秒前
11秒前
聪明飞飞发布了新的文献求助10
12秒前
13秒前
想躺平的咸鱼人完成签到,获得积分10
13秒前
13秒前
Seiswan完成签到,获得积分10
13秒前
洁净山灵发布了新的文献求助10
13秒前
我是老大应助酷酷的起眸采纳,获得10
14秒前
科研通AI5应助boshi采纳,获得10
15秒前
insane发布了新的文献求助10
16秒前
nini完成签到,获得积分10
16秒前
科研通AI5应助小李采纳,获得10
16秒前
Seiswan发布了新的文献求助30
18秒前
18秒前
18秒前
nini发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
果果发布了新的文献求助10
21秒前
科研助手6应助小赞采纳,获得10
22秒前
22秒前
seannnnnnn完成签到,获得积分10
22秒前
23秒前
23秒前
stefan完成签到,获得积分10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835128
求助须知:如何正确求助?哪些是违规求助? 3377624
关于积分的说明 10499544
捐赠科研通 3097120
什么是DOI,文献DOI怎么找? 1705552
邀请新用户注册赠送积分活动 820615
科研通“疑难数据库(出版商)”最低求助积分说明 772142