Multivariate Modular Metabolic Engineering for High Titer Uridine Triphosphate Production in Escherichia coli

代谢工程 尿苷三磷酸 尿苷 生物化学 大肠杆菌 合成生物学 化学 尿苷二磷酸 三磷酸腺苷 核苷酸 生物 基因 核糖核酸 计算生物学
作者
Kaifang Liu,Xiulai Chen,Jing Wu,Wei Song,Wanqing Wei,Li Liu,Cong Gao
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (1): 85-95 被引量:8
标识
DOI:10.1021/acssuschemeng.3c04820
摘要

Uridine triphosphate (UTP) holds great potential for applications in the food and medicine fields. Compared with the chemical synthesis route, microbial biosynthesis of UTP through metabolic engineering approaches offers a sustainable and environmentally friendly alternative. However, the tightly regulated UTP metabolic pathway has presented challenges in building efficient microbial cell factories. To address this issue, we applied a modular metabolic engineering strategy to overcome four distinct bottlenecks in UTP production in Escherichia coli. First, by blocking the UTP catabolic module, we achieved a substantial accumulation of UTP up to 304.67 μM. Second, in the UTP synthetic module, a uridine 5′-monophosphate (UMP) kinase variant (MtUMPKR141A/K148A) was obtained based on crystal structure analysis, resulting in a 10.47-fold increase in catalytic capacity. Furthermore, by fusion expression of the UMP kinase variant and orotidine 5′-phosphate decarboxylase, the conversion of UMP to UTP was improved, leading to UTP concentrations reaching 11.36 mM. Third, in the UTP precursor module, several key metabolism-related genes were engineered to enhance the supply of precursors, resulting in an 87.9% increase in UTP production. Finally, by implementing electron transport chain regulation with an ATP-sensing switch, the optimal strain E. coli K16 achieved an intracellular UTP concentration of 28.40 mM (13.75 g/L), which was 544.37-fold higher than that of the base strain. This study represents the design of a de novo UTP-producing strain through metabolic engineering, opening new avenues for UTP and its derivatives production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈艳林发布了新的文献求助10
刚刚
刚刚
曾经的苑博完成签到,获得积分10
刚刚
1秒前
maowei完成签到,获得积分10
1秒前
1秒前
COSMAO应助赵大虾采纳,获得10
1秒前
诸岩发布了新的文献求助10
2秒前
cp1690完成签到,获得积分10
2秒前
2秒前
xly完成签到,获得积分10
2秒前
情怀应助dhn123采纳,获得20
2秒前
4秒前
4秒前
4秒前
方百招发布了新的文献求助10
4秒前
终生科研徒刑完成签到 ,获得积分10
5秒前
大知闲闲完成签到 ,获得积分10
5秒前
最佳损友完成签到,获得积分0
6秒前
Windfall发布了新的文献求助10
6秒前
诸岩完成签到,获得积分10
7秒前
靥礼服完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Bio应助真不错采纳,获得50
9秒前
李爱国应助SHIKAMARU采纳,获得10
10秒前
疏水无纺布完成签到,获得积分10
10秒前
xiaoyao5y14完成签到,获得积分20
10秒前
老杨完成签到,获得积分10
11秒前
iuv完成签到,获得积分10
12秒前
eulota发布了新的文献求助10
13秒前
GUAMIAN完成签到,获得积分10
13秒前
13秒前
13秒前
方百招发布了新的文献求助10
15秒前
qweerrtt完成签到,获得积分10
16秒前
顺利白竹完成签到 ,获得积分10
16秒前
17秒前
科研通AI5应助lqm采纳,获得10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4198664
求助须知:如何正确求助?哪些是违规求助? 3734155
关于积分的说明 11757784
捐赠科研通 3407371
什么是DOI,文献DOI怎么找? 1869614
邀请新用户注册赠送积分活动 925520
科研通“疑难数据库(出版商)”最低求助积分说明 835981