亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing an advanced prediction model for new employee turnover intention utilizing machine learning techniques

逻辑回归 工作量 人事变更率 计算机科学 机器学习 回归分析 现象 人工智能 管理 经济 物理 量子力学 操作系统
作者
Jungryeol Park,Yituo Feng,Seon-Phil Jeong
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 1221-1221 被引量:28
标识
DOI:10.1038/s41598-023-50593-4
摘要

Abstract In recent years, the turnover phenomenon of new college graduates has been intensifying. The turnover of new employees creates many difficulties for businesses as it is difficult to recover the costs spent on their hiring and training. Therefore, it is necessary to promptly identify and effectively manage new employees who are inclined to change jobs. So far previous studies related to turnover intention have contributed to understanding the turnover phenomenon of new employees by identifying factors influencing turnover intention. However, with these factors, there is a limitation that it has not been able to present how much it is possible to predict employees who are actually willing to change jobs. Therefore, this study proposes a method of developing a machine learning-based turnover intention prediction model to overcome the limitations of previous studies. In this study, data from the Korea Employment Information Service's Job Movement Path Survey for college graduates were used, and OLS regression analysis was performed to confirm the influence of predictors. And model learning and classification were performed using a logistic regression (LR), k-nearest neighbor (KNN), and extreme gradient boosting (XGB) classifier. A novel finding of this research is the diminished or reversed influence of certain traditional factors, such as workload importance and the relevance of one's major field, on turnover intention. Instead, job security emerged as the most significant predictor. The model's accuracy rates, highest with XGB at 78.5%, demonstrate the efficacy of applying machine learning in turnover intention prediction, marking a significant advancement over traditional econometric models. This study breaks new ground by integrating advanced predictive analytics into turnover intention research, offering a more nuanced understanding of the factors influencing the turnover intentions of new college graduates. The insights gained could guide organizations in effectively managing and retaining new talent, highlighting the need for a focus on job security and organizational satisfaction, and the shifting relevance of traditional factors like job preference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li关闭了li文献求助
5秒前
长安宁完成签到 ,获得积分10
9秒前
专注雁桃完成签到 ,获得积分10
9秒前
NexusExplorer应助绿色植物采纳,获得10
21秒前
27秒前
orixero应助Flllllll采纳,获得20
28秒前
绿色植物发布了新的文献求助10
33秒前
51秒前
li发布了新的文献求助10
56秒前
57秒前
英俊的铭应助文123采纳,获得10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
慕青应助自信的兔子采纳,获得10
1分钟前
Criminology34举报无感求助涉嫌违规
1分钟前
信封里的太阳完成签到 ,获得积分10
1分钟前
叶楼完成签到 ,获得积分10
1分钟前
1分钟前
文123完成签到,获得积分10
1分钟前
1分钟前
文123发布了新的文献求助10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
shun发布了新的文献求助10
1分钟前
好运常在完成签到 ,获得积分10
2分钟前
丸子完成签到 ,获得积分10
2分钟前
YAYING完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ZYSNNNN完成签到,获得积分10
2分钟前
斯通纳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
研友_VZG7GZ应助shun采纳,获得10
3分钟前
我是谁完成签到,获得积分10
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Zz完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622197
求助须知:如何正确求助?哪些是违规求助? 4707114
关于积分的说明 14938760
捐赠科研通 4768835
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475028