CoDriver ETA: Combine Driver Information in Estimated Time of Arrival by Driving Style Learning Auxiliary Task

计算机科学 嵌入 调度(生产过程) 任务(项目管理) 人工智能 个性化 机器学习 深度学习 弹道 智能交通系统 工程类 运营管理 物理 土木工程 系统工程 天文 万维网
作者
Yiwen Sun,Kun Fu,Zheng Wang,Donghua Zhou,Kailun Wu,Jieping Ye,Changshui Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 4037-4048 被引量:23
标识
DOI:10.1109/tits.2020.3040386
摘要

Estimated time of arrival (ETA) is one of the most important services in intelligent transportation systems (ITS). Precise ETA ensures proper travel scheduling of passengers as well as guarantees efficient decision-making on ride-hailing platforms, which are used by an explosively growing number of people in the past few years. Recently, machine learning-based methods have been widely adopted to solve this time estimation problem and become state-of-the-art. However, they do not well explore the personalization information, as many drivers are short of personalized data and do not have sufficient trajectory data in real applications. This data sparsity problem prevents existing methods from obtaining higher prediction accuracy. In this article, we propose a novel deep learning method to solve this problem. We introduce an auxiliary task to learn an embedding of the personalized driving information under multi-task learning framework. In this task, we discriminatively learn the embedding of driving preference that preserves the historical statistics of driving speed. For this purpose, we adapt the triplet network from face recognition to learn the embedding by constructing triplets in the feature space. This simultaneously learned embedding can effectively boost the prediction accuracy of the travel time. We evaluate our method on two large-scale real-world datasets from Didi Chuxing platform. The extensive experimental results on billions of historical vehicle travel data demonstrate that the proposed method outperforms state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Kenny采纳,获得10
刚刚
浮游应助一个快乐的吃货采纳,获得10
1秒前
1秒前
在水一方应助江璃采纳,获得10
2秒前
陈业伟完成签到,获得积分10
2秒前
2秒前
4秒前
科研通AI6应助迷路诗蕊采纳,获得10
4秒前
5秒前
杨煜完成签到 ,获得积分10
5秒前
羊羊完成签到,获得积分10
6秒前
ERIC发布了新的文献求助10
6秒前
88完成签到,获得积分10
7秒前
明理皮卡丘完成签到,获得积分10
8秒前
烟花应助淡定的萝莉采纳,获得10
8秒前
勤恳的小馒头完成签到,获得积分10
8秒前
8秒前
8848完成签到,获得积分10
8秒前
9秒前
大朋完成签到,获得积分10
9秒前
隐形曼青应助wzs采纳,获得10
10秒前
陶醉清发布了新的文献求助10
10秒前
佳jia发布了新的文献求助10
10秒前
luo完成签到,获得积分0
13秒前
loyal完成签到,获得积分10
13秒前
Pprain完成签到,获得积分10
13秒前
13秒前
SciGPT应助kirido采纳,获得10
14秒前
CC完成签到,获得积分10
14秒前
Dyson Hou应助凯蒂狗采纳,获得20
14秒前
14秒前
15秒前
Felidae0x发布了新的文献求助10
15秒前
小明应助偏嗳流星雨采纳,获得10
15秒前
852应助RO采纳,获得10
16秒前
16秒前
17秒前
落尘发布了新的文献求助10
17秒前
gao完成签到,获得积分10
18秒前
科研通AI2S应助hkh采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4723004
求助须知:如何正确求助?哪些是违规求助? 4082136
关于积分的说明 12624037
捐赠科研通 3787740
什么是DOI,文献DOI怎么找? 2091984
邀请新用户注册赠送积分活动 1117839
科研通“疑难数据库(出版商)”最低求助积分说明 994617