CoDriver ETA: Combine Driver Information in Estimated Time of Arrival by Driving Style Learning Auxiliary Task

计算机科学 嵌入 调度(生产过程) 任务(项目管理) 人工智能 个性化 机器学习 深度学习 弹道 智能交通系统 工程类 运营管理 物理 土木工程 系统工程 天文 万维网
作者
Yiwen Sun,Kun Fu,Zheng Wang,Donghua Zhou,Kailun Wu,Jieping Ye,Changshui Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 4037-4048 被引量:23
标识
DOI:10.1109/tits.2020.3040386
摘要

Estimated time of arrival (ETA) is one of the most important services in intelligent transportation systems (ITS). Precise ETA ensures proper travel scheduling of passengers as well as guarantees efficient decision-making on ride-hailing platforms, which are used by an explosively growing number of people in the past few years. Recently, machine learning-based methods have been widely adopted to solve this time estimation problem and become state-of-the-art. However, they do not well explore the personalization information, as many drivers are short of personalized data and do not have sufficient trajectory data in real applications. This data sparsity problem prevents existing methods from obtaining higher prediction accuracy. In this article, we propose a novel deep learning method to solve this problem. We introduce an auxiliary task to learn an embedding of the personalized driving information under multi-task learning framework. In this task, we discriminatively learn the embedding of driving preference that preserves the historical statistics of driving speed. For this purpose, we adapt the triplet network from face recognition to learn the embedding by constructing triplets in the feature space. This simultaneously learned embedding can effectively boost the prediction accuracy of the travel time. We evaluate our method on two large-scale real-world datasets from Didi Chuxing platform. The extensive experimental results on billions of historical vehicle travel data demonstrate that the proposed method outperforms state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
画江湖天帅星完成签到,获得积分10
1秒前
hehehehehe完成签到 ,获得积分10
1秒前
zhou发布了新的文献求助10
1秒前
鱼罐罐罐头完成签到,获得积分10
3秒前
nannan发布了新的文献求助10
3秒前
CC晨发布了新的文献求助10
4秒前
杨雪妮完成签到,获得积分20
4秒前
xianwen完成签到,获得积分10
4秒前
4秒前
Bellona发布了新的文献求助10
5秒前
肥珊发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
聪明的绮波完成签到,获得积分10
6秒前
6秒前
搜集达人应助老实芯采纳,获得10
7秒前
桐桐应助qqq采纳,获得10
7秒前
7秒前
时光轴完成签到,获得积分10
8秒前
8秒前
现安完成签到,获得积分10
8秒前
852应助zzzz采纳,获得10
8秒前
yoyocici1505完成签到,获得积分0
8秒前
热心的血茗完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
我是老大应助LYL采纳,获得10
10秒前
口袋锅锅发布了新的文献求助10
10秒前
10秒前
kyros完成签到,获得积分10
10秒前
风中的小夏完成签到,获得积分10
10秒前
10秒前
秀丽的平彤完成签到,获得积分10
11秒前
大狒狒发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351701
求助须知:如何正确求助?哪些是违规求助? 4484725
关于积分的说明 13960182
捐赠科研通 4384369
什么是DOI,文献DOI怎么找? 2408910
邀请新用户注册赠送积分活动 1401467
关于科研通互助平台的介绍 1374968