纳米片
分解水
过电位
阳极
析氧
材料科学
双功能
化学工程
阴极
电化学
纳米技术
电极
催化作用
化学
光催化
生物化学
工程类
物理化学
作者
Junlin Huang,Shiyue Wang,Jianhang Nie,Chuqi Huang,Xiaohua Zhang,Biao Wang,Jie Tang,Cuicui Du,Zhixiao Liu,Jinhua Chen
标识
DOI:10.1016/j.cej.2020.128055
摘要
The recently emerging renewable energy industry has boosted a research hot in searching for bifunctional electrocatalysts for water splitting. CoSe2, as one of transition-metal chalcogenides, has attracted particular attention because of its abundant resource, low cost, high efficiency and stability. However, further enhancing catalytic activity of CoSe2 to meet the large-scale application requirements of hydrogen energy remains an important challenge. Herein, three-dimension (3D) Mo-doped porous CoSe2 nanosheet array was directly formed on commercial Ni foam (Mo-CoSe2 [email protected]) electrode through a three-step process including electrodeposition, hydrothermal and subsequent selenylation. Systematically experimental research and density functional theory calculations confirmed that, based on active site and intermediate modulation effect of Mo doping, the obtained 3D Mo-CoSe2 [email protected] electrodes were provided with enlarged electrochemical active surface area, improved charge transport capability and significantly optimized binding energy for active intermediates of the potential-limiting step, thus exhibiting remarkably boosted bifunctional electrocatalytic ability with a low overpotential of 89 and 234 mV to drive a current density of 10 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, respectively. When the Mo-CoSe2 [email protected] electrode was employed as both a cathode and an anode, an advanced water electrolyzer was fabricated, and a 10 mA cm−2 water splitting current density in 1 M KOH solution could be acquired at a minimal cell voltage of 1.54 V. In addition, we also inferred that the active surface for the OER was O* covered CoSe2, and OER occurred through direct recombination mechanism according to the present first-principles simulation. This work offers an atomistic understanding on the boosted HER and OER electrocatalytical activity of CoSe2 by Mo doping, and develops a promising strategy for exploring advanced low-cost and earth-abundant water splitting electrocatalysts to substitute for the precious-metallic catalysts as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI