Euclid: A Fully In-Network, P4-Based Approach for Real-Time DDoS Attack Detection and Mitigation

计算机科学 服务拒绝攻击 网络数据包 计算机网络 吞吐量 计算机安全 内存占用 大方坯过滤器 应用层DDoS攻击 互联网 操作系统 无线
作者
Alexandre da Silveira Ilha,Angelo Cardoso Lapolli,Jonatas Adilson Marques,Luciano Paschoal Gaspary
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:18 (3): 3121-3139 被引量:48
标识
DOI:10.1109/tnsm.2020.3048265
摘要

Distributed Denial-of-Service (DDoS) attacks have been steadily escalating in frequency, scale, and disruptiveness - with outbreaks reaching multiple terabits per second and compromising the availability of highly-resilient networked systems. Existing defenses require frequent interaction between forwarding and control planes, making it difficult to reach a satisfactory trade-off between accuracy (higher is better), resource usage, and defense response delay (lower is better). Recently, high-performance programmable data planes have made it possible to develop a new generation of mechanisms to analyze and manage traffic at line rate. In this article, we explore P4 language constructs and primitives to design Euclid, a fully in-network fine-grained, low-footprint, and low-delay traffic analysis mechanism for DDoS attack detection and mitigation. Euclid utilizes information-theoretic and statistical analysis to detect attacks and classify packets as either legitimate or malicious, thus enabling the enforcement of policies (e.g., discarding, inspection, or throttling) to prevent attack traffic from disrupting the operation of its victims. We experimentally evaluate our proposed mechanism using packet traces from CAIDA. The results indicate that Euclid can detect attacks with high accuracy (98.2%) and low delay (≈250 ms), and correctly identify most of the attack packets (>96%) without affecting more than 1% of the legitimate traffic. Furthermore, our approach operates under a small resource usage footprint (tens of kilobytes of static random-access memory per 1 Gbps link and a few hundred ternary content-addressable memory entries), thus enabling its deployability on high-throughput, high-volume scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
01发布了新的文献求助10
3秒前
丁三问完成签到,获得积分10
7秒前
舒适的梦玉完成签到,获得积分10
9秒前
11秒前
monica完成签到,获得积分10
14秒前
Always发布了新的文献求助10
16秒前
超级裁缝发布了新的文献求助20
19秒前
19秒前
爬得飞快的仲文博完成签到,获得积分10
21秒前
23秒前
大模型应助耀星采纳,获得10
26秒前
明亮的尔竹完成签到,获得积分10
28秒前
zong240221完成签到 ,获得积分10
28秒前
handa完成签到,获得积分10
29秒前
明亮无颜发布了新的文献求助50
29秒前
田様应助超级裁缝采纳,获得10
29秒前
blue完成签到,获得积分10
29秒前
30秒前
30秒前
31秒前
31秒前
领导范儿应助一步一步0617采纳,获得10
33秒前
34秒前
在水一方应助正直博涛采纳,获得10
35秒前
健壮不斜发布了新的文献求助10
36秒前
handa发布了新的文献求助10
36秒前
37秒前
豪哥发布了新的文献求助10
38秒前
39秒前
39秒前
42秒前
CipherSage应助彩色的向珊采纳,获得10
42秒前
独特惋清发布了新的文献求助10
43秒前
sobergod发布了新的文献求助10
44秒前
46秒前
47秒前
坚定的松鼠完成签到,获得积分10
49秒前
49秒前
49秒前
欢喜依霜完成签到 ,获得积分10
53秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826385
求助须知:如何正确求助?哪些是违规求助? 3368819
关于积分的说明 10452296
捐赠科研通 3088284
什么是DOI,文献DOI怎么找? 1699044
邀请新用户注册赠送积分活动 817266
科研通“疑难数据库(出版商)”最低求助积分说明 770130