催化作用
纳米尺度
纳米颗粒
光催化
化学
化学工程
胶体
纳米技术
理论(学习稳定性)
金属
多相催化
材料科学
物理化学
有机化学
工程类
机器学习
计算机科学
作者
Alexander Holm,Emmett D. Goodman,Joakim Halldin Stenlid,Aisulu Aitbekova,Rosadriana Zelaya,Benjamin T. Diroll,Aaron C. Johnston‐Peck,Kun‐Che Kao,Curtis W. Frank,Lars G. M. Pettersson,Matteo Cargnello
摘要
Supported metal nanoparticles are essential components of high-performing catalysts, and their structures are intensely researched. In comparison, nanoparticle spatial distribution in powder catalysts is conventionally not quantified, and the influence of this collective property on catalyst performance remains poorly investigated. Here, we demonstrate a general colloidal self-assembly method to control uniformity of nanoparticle spatial distribution on common industrial powder supports. We quantify distributions on the nanoscale using image statistics and show that the type of nanospatial distribution determines not only the stability, but also the activity of heterogeneous catalysts. Widely investigated systems (Au-TiO
科研通智能强力驱动
Strongly Powered by AbleSci AI