Dynamic clustering analysis for driving styles identification

计算机科学 仿形(计算机编程) 聚类分析 背景(考古学) 人工智能 鉴定(生物学) 驾驶模拟器 星团(航天器) 植物 生物 操作系统 古生物学 程序设计语言
作者
Maria Valentina Niño de Zepeda,Fanlin Meng,Jinya Su,Xiao‐Jun Zeng,Qian Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:97: 104096-104096 被引量:45
标识
DOI:10.1016/j.engappai.2020.104096
摘要

Abstract For intelligent driving systems, the ability to recognize different driving styles of surrounding vehicles is crucial in determining the safest, yet more efficient driving decisions especially in the context of the mixed driving environment. Knowing for instance if the vehicle in the adjacent lane is aggressive or cautious can greatly assist in the decision making of ego vehicle in terms of whether and when it is appropriate to make particular manoeuvres (e.g. lane change). In addition, vehicles behave differently under different surrounding environments, making the driving styles identification highly challenging. To this end, in this paper we propose a dynamic clustering based driving styles identification and profiling approach where clusters vary in response to the changing surrounding environment. To better capture dynamic driving patterns and understand the driving style switch behaviours and more complicated driving patterns, a position-dependent dynamic clustering structure is developed where a driver is assigned to a cluster sequence rather than a single cluster. To the best of our knowledge, this is the first research paper of its kind on the dynamic clustering of driving styles. The usefulness of the proposed method is demonstrated on a real-world vehicle trajectory dataset where results show that driving style switches and more complex driving behaviours can be better captured. The potential applications in intelligent driving systems are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
罗莹洁完成签到,获得积分10
1秒前
黄同学完成签到,获得积分10
2秒前
圆锥香蕉应助科研通管家采纳,获得20
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Meyako应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
斯文败类应助雪白的皮带采纳,获得30
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
柏林寒冬应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
Liu完成签到,获得积分10
7秒前
dan完成签到 ,获得积分10
7秒前
7秒前
li发布了新的文献求助10
9秒前
iso完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助斯可采纳,获得10
10秒前
zhutier发布了新的文献求助10
11秒前
12秒前
14秒前
15秒前
无期发布了新的文献求助10
15秒前
Akim应助你好帅的哦采纳,获得10
16秒前
li完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
25秒前
26秒前
26秒前
kikeva发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4312955
求助须知:如何正确求助?哪些是违规求助? 3833031
关于积分的说明 11991904
捐赠科研通 3473061
什么是DOI,文献DOI怎么找? 1904478
邀请新用户注册赠送积分活动 951278
科研通“疑难数据库(出版商)”最低求助积分说明 852947