Dynamic clustering analysis for driving styles identification

计算机科学 仿形(计算机编程) 聚类分析 背景(考古学) 人工智能 鉴定(生物学) 驾驶模拟器 星团(航天器) 植物 生物 操作系统 古生物学 程序设计语言
作者
Maria Valentina Niño de Zepeda,Fanlin Meng,Jinya Su,Xiao‐Jun Zeng,Qian Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:97: 104096-104096 被引量:52
标识
DOI:10.1016/j.engappai.2020.104096
摘要

Abstract For intelligent driving systems, the ability to recognize different driving styles of surrounding vehicles is crucial in determining the safest, yet more efficient driving decisions especially in the context of the mixed driving environment. Knowing for instance if the vehicle in the adjacent lane is aggressive or cautious can greatly assist in the decision making of ego vehicle in terms of whether and when it is appropriate to make particular manoeuvres (e.g. lane change). In addition, vehicles behave differently under different surrounding environments, making the driving styles identification highly challenging. To this end, in this paper we propose a dynamic clustering based driving styles identification and profiling approach where clusters vary in response to the changing surrounding environment. To better capture dynamic driving patterns and understand the driving style switch behaviours and more complicated driving patterns, a position-dependent dynamic clustering structure is developed where a driver is assigned to a cluster sequence rather than a single cluster. To the best of our knowledge, this is the first research paper of its kind on the dynamic clustering of driving styles. The usefulness of the proposed method is demonstrated on a real-world vehicle trajectory dataset where results show that driving style switches and more complex driving behaviours can be better captured. The potential applications in intelligent driving systems are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shihuima完成签到,获得积分10
刚刚
yulong完成签到,获得积分10
1秒前
1秒前
赵先生应助fzzf采纳,获得10
1秒前
诚心的访蕊完成签到 ,获得积分10
1秒前
呆鹅喵喵完成签到,获得积分10
1秒前
Akim应助西海焖面采纳,获得10
2秒前
2秒前
2秒前
么么儿完成签到 ,获得积分20
2秒前
3秒前
3秒前
万幸鹿完成签到,获得积分10
3秒前
心怡完成签到,获得积分10
3秒前
田様应助马前人采纳,获得10
3秒前
乐乐应助莫林在采纳,获得10
4秒前
阿鲁高发布了新的文献求助10
4秒前
萌面大侠完成签到,获得积分10
4秒前
啄春泥发布了新的文献求助10
4秒前
CipherSage应助大菠萝采纳,获得10
4秒前
4秒前
刘晓伟发布了新的文献求助10
5秒前
许平平发布了新的文献求助10
5秒前
ZYY发布了新的文献求助10
5秒前
HuE发布了新的文献求助20
5秒前
czq发布了新的文献求助10
5秒前
A9W01U发布了新的文献求助10
5秒前
谁在深海的大菠萝里完成签到,获得积分10
6秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
6秒前
Tourist应助plaaf采纳,获得10
6秒前
懒羊羊发布了新的文献求助10
6秒前
俊秀的芫发布了新的文献求助10
6秒前
zhaoyue完成签到 ,获得积分10
7秒前
GGboooond发布了新的文献求助10
7秒前
华仔应助aaa北大街采纳,获得10
7秒前
puff完成签到,获得积分10
8秒前
hh关闭了hh文献求助
8秒前
bb应助冷静绿旋采纳,获得10
8秒前
勤劳白翠发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5176292
求助须知:如何正确求助?哪些是违规求助? 4365276
关于积分的说明 13591128
捐赠科研通 4215011
什么是DOI,文献DOI怎么找? 2311757
邀请新用户注册赠送积分活动 1310667
关于科研通互助平台的介绍 1258741