Generative Adversarial Minority Oversampling for Spectral–Spatial Hyperspectral Image Classification

过采样 高光谱成像 人工智能 分类器(UML) 计算机科学 鉴别器 班级(哲学) 模式识别(心理学) 生成对抗网络 卷积神经网络 对抗制 图像(数学) 机器学习 带宽(计算) 探测器 电信 计算机网络
作者
Swalpa Kumar Roy,Juan M. Haut,Mercedes E. Paoletti,Shiv Ram Dubey,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:73
标识
DOI:10.1109/tgrs.2021.3052048
摘要

Recently, convolutional neural networks (CNNs) have exhibited commendable performance for hyperspectral image (HSI) classification. Generally, an important number of samples are needed for each class to properly train CNNs. However, existing HSI data sets suffer from a significant class imbalance problem, where many classes do not have enough samples to characterize the spectral information. The performance of existing CNN models is biased toward the majority classes, which possess more samples for the training. This article addresses this issue of imbalanced data in HSI classification. In particular, a new 3D-HyperGAMO model is proposed, which uses generative adversarial minority oversampling. The proposed 3D-HyperGAMO automatically generates more samples for minority classes at training time, using the existing samples of that class. The samples are generated in the form of a 3-D hyperspectral patch. A different classifier from the generator and the discriminator is used in the 3D-HyperGAMO model, which is trained using both original and generated samples to determine the classes of newly generated samples to which they actually belong. The generated data are combined classwise with the original training data set to learn the network parameters of the class. Finally, the trained 3-D classifier network validates the performance of the model using the test set. Four benchmark HSI data sets, namely, Indian Pines (IP), Kennedy Space Center (KSC), University of Pavia (UP), and Botswana (BW), have been considered in our experiments. The proposed model shows outstanding data generation ability during the training, which significantly improves the classification performance over the considered data sets. The source code is available publicly at https://github.com/mhaut/3D-HyperGAMO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axl完成签到,获得积分10
1秒前
zhuxiangchen关注了科研通微信公众号
2秒前
3秒前
朱一龙完成签到,获得积分10
5秒前
小二郎应助happily遇采纳,获得10
8秒前
Albert完成签到,获得积分10
10秒前
hcmsaobang2001完成签到,获得积分10
10秒前
liu完成签到,获得积分20
11秒前
自觉的夏之完成签到,获得积分20
13秒前
小小雪完成签到 ,获得积分10
14秒前
shuaixiaoyu完成签到,获得积分10
17秒前
18秒前
19秒前
Ronaldo完成签到,获得积分10
19秒前
海宁完成签到,获得积分10
19秒前
20秒前
细胞骨架完成签到,获得积分10
20秒前
flttlhc发布了新的文献求助10
20秒前
ocdspkss完成签到,获得积分10
22秒前
22秒前
不认识完成签到,获得积分20
23秒前
24秒前
24秒前
24秒前
happily遇发布了新的文献求助10
25秒前
桐桐应助彭于晏采纳,获得10
26秒前
freddy发布了新的文献求助10
26秒前
28秒前
29秒前
peanuttt发布了新的文献求助10
29秒前
杨欣悦发布了新的文献求助10
30秒前
知行合一完成签到 ,获得积分10
30秒前
科研通AI2S应助ocdspkss采纳,获得10
30秒前
31秒前
www发布了新的文献求助100
32秒前
32秒前
33秒前
33秒前
Hollen完成签到 ,获得积分10
35秒前
11发布了新的文献求助10
37秒前
高分求助中
诺和针® 32G 4mm 说明书(2023年2月23日) 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899405
求助须知:如何正确求助?哪些是违规求助? 3444106
关于积分的说明 10833202
捐赠科研通 3168923
什么是DOI,文献DOI怎么找? 1750884
邀请新用户注册赠送积分活动 846335
科研通“疑难数据库(出版商)”最低求助积分说明 789157