Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization

数学优化 计算机科学 最优化问题 采样(信号处理) 线性规划 自适应采样 反问题 集合(抽象数据类型) 计算 反向 算法 数学 数学分析 滤波器(信号处理) 统计 计算机视觉 程序设计语言 蒙特卡罗方法 几何学
作者
Rishabh Gupta,Qi Zhang
出处
期刊:Informs Journal on Computing 卷期号:34 (5): 2720-2735 被引量:12
标识
DOI:10.1287/ijoc.2022.1162
摘要

This work addresses inverse linear optimization, where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, compared with other existing methods, allows the recovery of a less restrictive and generally more appropriate admissible set of cost estimates. It can be shown that this inverse optimization problem yields a finite number of solutions, and we develop an exact two-phase algorithm to determine all such solutions. Moreover, we propose an efficient decomposition algorithm to solve large instances of the problem. The algorithm extends naturally to an online learning environment where it can be used to provide quick updates of the cost estimate as new data become available over time. For the online setting, we further develop an effective adaptive sampling strategy that guides the selection of the next samples. The efficacy of the proposed methods is demonstrated in computational experiments involving two applications: customer preference learning and cost estimation for production planning. The results show significant reductions in computation and sampling efforts. Summary of Contribution: Using optimization to facilitate decision making is at the core of operations research. This work addresses the inverse problem (i.e., inverse optimization), which aims to infer unknown optimization models from decision data. It is, conceptually and computationally, a challenging problem. Here, we propose a new formulation of the data-driven inverse linear optimization problem and develop an efficient decomposition algorithm that can solve problem instances up to a scale that has not been addressed previously. The computational performance is further improved by an online adaptive sampling strategy that substantially reduces the number of required data points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj158完成签到,获得积分10
1秒前
1秒前
奋斗的大米完成签到,获得积分10
2秒前
Hello应助www采纳,获得10
3秒前
illusion2019应助lizhiqian2024采纳,获得10
3秒前
4秒前
科研通AI2S应助cldg采纳,获得10
4秒前
小丫头发布了新的文献求助10
4秒前
Lucas应助快来和姐妹玩采纳,获得10
5秒前
李卓发布了新的文献求助10
5秒前
所所应助jgpiao采纳,获得10
5秒前
丘比特应助liu采纳,获得10
6秒前
无花果应助陈陈陈陈采纳,获得10
6秒前
听雨潇潇发布了新的文献求助10
7秒前
Green发布了新的文献求助10
8秒前
kingwill应助Sulin采纳,获得20
8秒前
高震博完成签到 ,获得积分10
10秒前
Akim应助谷粱靖采纳,获得10
10秒前
恩物来说完成签到 ,获得积分10
11秒前
12秒前
14秒前
你以为你是谁完成签到,获得积分10
15秒前
15秒前
15秒前
李健的小迷弟应助hugeng采纳,获得10
15秒前
柚哦发布了新的文献求助10
15秒前
bkagyin应助我想大声告诉你采纳,获得10
18秒前
19秒前
19秒前
20秒前
yin发布了新的文献求助10
20秒前
多情蓝发布了新的文献求助10
20秒前
21秒前
www发布了新的文献求助10
21秒前
田様应助Ayaya采纳,获得10
21秒前
852应助李卓采纳,获得10
21秒前
aaa完成签到,获得积分10
22秒前
TRY关闭了TRY文献求助
22秒前
柚哦完成签到,获得积分10
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792