Diabetic Retinopathy Diagnosis Using Multichannel Generative Adversarial Network With Semisupervision

人工智能 计算机科学 深度学习 医学影像学 眼底(子宫) 糖尿病性视网膜病变 生成模型 计算机视觉 模式识别(心理学) 生成语法 机器学习 医学 放射科 糖尿病 内分泌学
作者
Shuqiang Wang,Xiangyu Wang,Yong Hu,Yanyan Shen,Zhile Yang,Min Gan,Baiying Lei
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 574-585 被引量:111
标识
DOI:10.1109/tase.2020.2981637
摘要

Diabetic retinopathy (DR) is one of the major causes of blindness. It is of great significance to apply deep-learning techniques for DR recognition. However, deep-learning algorithms often depend on large amounts of labeled data, which is expensive and time-consuming to obtain in the medical imaging area. In addition, the DR features are inconspicuous and spread out over high-resolution fundus images. Therefore, it is a big challenge to learn the distribution of such DR features. This article proposes a multichannel-based generative adversarial network (MGAN) with semisupervision to grade DR. The multichannel generative model is developed to generate a series of subfundus images corresponding to the scattering DR features. By minimizing the dependence on labeled data, the proposed semisupervised MGAN can identify the inconspicuous lesion features by using high-resolution fundus images without compression. Experimental results on the public Messidor data set show that the proposed model can grade DR effectively. Note to Practitioners-This article is motivated by the challenging problem due to the inadequacy of labeled data in medical image analysis and the dispersion of efficient features in high-resolution medical images. As for the inadequacy of labeled data in medical image analysis, the reasons mainly include the followings: 1) the high-quality annotation of medical imaging sample depends heavily on scarce medical expertise which is very expensive and 2) comparing with natural issues, it is more difficult to collect medical images because of privacy issues. It is of great significance to apply deep-learning techniques for diabetic retinopathy (DR) recognition. In this article, the multichannel generative adversarial network (GAN) with semisupervision is developed for DR-aided diagnosis. The proposed model can deal with DR classification problem with inadequacy of labeled data in the following ways: 1) the multichannel generative scheme is proposed to generate a series of subfundus images corresponding to the scattering DR features and 2) the proposed multichannel-based GAN (MGAN) model with semisupervision can make full use of both labeled data and unlabeled data. The experimental results demonstrate that the proposed model outperforms the other representative models in terms of accuracy, area under ROC curve (AUC), sensitivity, and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的毛豆应助秀丽笑容采纳,获得10
刚刚
Cherish完成签到,获得积分10
3秒前
cdercder应助treetree采纳,获得10
5秒前
5秒前
安详的念桃完成签到,获得积分10
8秒前
10秒前
橙汁发布了新的文献求助30
10秒前
猪猪hero发布了新的文献求助10
14秒前
想不想发布了新的文献求助10
14秒前
wickedzz完成签到,获得积分10
15秒前
18秒前
18秒前
JL完成签到,获得积分10
18秒前
19秒前
hl完成签到,获得积分10
19秒前
青橘短衫完成签到,获得积分10
21秒前
轻松的千亦关注了科研通微信公众号
22秒前
23秒前
hl发布了新的文献求助10
24秒前
24秒前
chen发布了新的文献求助10
24秒前
26秒前
不远完成签到,获得积分10
27秒前
Yami完成签到 ,获得积分10
28秒前
kc发布了新的文献求助10
30秒前
31秒前
32秒前
梦鱼完成签到,获得积分10
32秒前
达瓦里希完成签到 ,获得积分10
33秒前
诸笑白完成签到,获得积分10
33秒前
阿童木完成签到,获得积分10
33秒前
高冉完成签到 ,获得积分10
34秒前
35秒前
kc完成签到,获得积分10
36秒前
灵巧尔云发布了新的文献求助10
37秒前
白云朵儿发布了新的文献求助10
39秒前
WN关闭了WN文献求助
39秒前
bill完成签到,获得积分10
40秒前
阿飞完成签到,获得积分10
42秒前
科研通AI2S应助kc采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783189
求助须知:如何正确求助?哪些是违规求助? 3328536
关于积分的说明 10236946
捐赠科研通 3043651
什么是DOI,文献DOI怎么找? 1670622
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126