An embedded feature selection method for imbalanced data classification

特征选择 统计的 计算机科学 分类器(UML) 模式识别(心理学) 决策树 人工智能 接收机工作特性 特征(语言学) 信息增益比 数据挖掘 选择(遗传算法) 机器学习 统计 数学 哲学 语言学
作者
Haoyue Liu,MengChu Zhou,Qing Liu
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 703-715 被引量:340
标识
DOI:10.1109/jas.2019.1911447
摘要

Imbalanced data is one type of datasets that are frequently found in real-world applications, e.g., fraud detection and cancer diagnosis. For this type of datasets, improving the accuracy to identify their minority class is a critically important issue. Feature selection is one method to address this issue. An effective feature selection method can choose a subset of features that favor in the accurate determination of the minority class. A decision tree is a classifier that can be built up by using different splitting criteria. Its advantage is the ease of detecting which feature is used as a splitting node. Thus, it is possible to use a decision tree splitting criterion as a feature selection method. In this paper, an embedded feature selection method using our proposed weighted Gini index (WGI) is proposed. Its comparison results with Chi2, F-statistic and Gini index feature selection methods show that F-statistic and Chi2 reach the best performance when only a few features are selected. As the number of selected features increases, our proposed method has the highest probability of achieving the best performance. The area under a receiver operating characteristic curve (ROC AUC) and F-measure are used as evaluation criteria. Experimental results with two datasets show that ROC AUC performance can be high, even if only a few features are selected and used, and only changes slightly as more and more features are selected. However, the performance of Fmeasure achieves excellent performance only if 20% or more of features are chosen. The results are helpful for practitioners to select a proper feature selection method when facing a practical problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到,获得积分10
刚刚
刚刚
冰墨完成签到,获得积分10
1秒前
qly完成签到,获得积分20
1秒前
灵灵应助magnoliawong采纳,获得10
1秒前
Allen完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
ATYS完成签到,获得积分10
3秒前
3秒前
谨言完成签到 ,获得积分10
3秒前
Ellen完成签到,获得积分10
4秒前
lee1984612完成签到,获得积分10
4秒前
shouyu29应助gyy采纳,获得10
4秒前
Hysen_L完成签到,获得积分10
4秒前
5秒前
SQDHZJ完成签到,获得积分10
5秒前
6秒前
hehehe发布了新的文献求助10
6秒前
迷路的晓旋完成签到,获得积分10
6秒前
冯藏花完成签到,获得积分10
6秒前
宋虹发布了新的文献求助10
7秒前
七羽完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
soss关注了科研通微信公众号
9秒前
犹豫忆灵发布了新的文献求助10
9秒前
tramp应助王其超采纳,获得20
9秒前
搔扒完成签到,获得积分10
10秒前
领导范儿应助河边的芦苇采纳,获得30
10秒前
sasa发布了新的文献求助10
10秒前
芝士蛋糕发布了新的文献求助10
10秒前
白茶完成签到 ,获得积分10
10秒前
zs_123发布了新的文献求助10
10秒前
旺旺完成签到,获得积分10
11秒前
Lzy完成签到 ,获得积分10
11秒前
11秒前
忧伤的八宝粥完成签到,获得积分10
11秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875592
求助须知:如何正确求助?哪些是违规求助? 3418155
关于积分的说明 10707205
捐赠科研通 3142797
什么是DOI,文献DOI怎么找? 1734019
邀请新用户注册赠送积分活动 836341
科研通“疑难数据库(出版商)”最低求助积分说明 782628