A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images

高光谱成像 计算机科学 遥感 卷积神经网络 Rust(编程语言) 深度学习 人工智能 特征提取 光谱特征 模式识别(心理学) 农业工程 环境科学 工程类 程序设计语言 地质学
作者
Xin Zhang,Liangxiu Han,Yingying Dong,Yue Shi,Wenjiang Huang,Lianghao Han,Pablo González‐Moreno,Huiqin Ma,Huichun Ye,Tam Sobeih
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (13): 1554-1554 被引量:293
标识
DOI:10.3390/rs11131554
摘要

Yellow rust in winter wheat is a widespread and serious fungal disease, resulting in significant yield losses globally. Effective monitoring and accurate detection of yellow rust are crucial to ensure stable and reliable wheat production and food security. The existing standard methods often rely on manual inspection of disease symptoms in a small crop area by agronomists or trained surveyors. This is costly, time consuming and prone to error due to the subjectivity of surveyors. Recent advances in unmanned aerial vehicles (UAVs) mounted with hyperspectral image sensors have the potential to address these issues with low cost and high efficiency. This work proposed a new deep convolutional neural network (DCNN) based approach for automated crop disease detection using very high spatial resolution hyperspectral images captured with UAVs. The proposed model introduced multiple Inception-Resnet layers for feature extraction and was optimized to establish the most suitable depth and width of the network. Benefiting from the ability of convolution layers to handle three-dimensional data, the model used both spatial and spectral information for yellow rust detection. The model was calibrated with hyperspectral imagery collected by UAVs in five different dates across a whole crop cycle over a well-controlled field experiment with healthy and rust infected wheat plots. Its performance was compared across sampling dates and with random forest, a representative of traditional classification methods in which only spectral information was used. It was found that the method has high performance across all the growing cycle, particularly at late stages of the disease spread. The overall accuracy of the proposed model (0.85) was higher than that of the random forest classifier (0.77). These results showed that combining both spectral and spatial information is a suitable approach to improving the accuracy of crop disease detection with high resolution UAV hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西弗斯完成签到,获得积分0
1秒前
tong完成签到,获得积分10
2秒前
浮游应助小牛马采纳,获得10
3秒前
酷波er应助专注易绿采纳,获得10
4秒前
326361887完成签到,获得积分10
4秒前
咿呀咿呀哟完成签到,获得积分10
4秒前
5秒前
7秒前
龍焱给龍焱的求助进行了留言
7秒前
FashionBoy应助糖小白采纳,获得10
8秒前
TT发布了新的文献求助10
8秒前
9秒前
言小完成签到,获得积分10
9秒前
DLa-feng发布了新的文献求助10
10秒前
小二郎应助virua00采纳,获得10
11秒前
12秒前
12秒前
13秒前
专注易绿发布了新的文献求助10
15秒前
斌糖排骨发布了新的文献求助10
16秒前
sky完成签到,获得积分10
16秒前
17秒前
Eternal完成签到 ,获得积分10
17秒前
Katherine完成签到,获得积分10
17秒前
xiaoan完成签到,获得积分10
17秒前
xiaojichipi完成签到,获得积分10
17秒前
yuki完成签到,获得积分10
17秒前
拼搏惜金发布了新的文献求助10
18秒前
18秒前
蔺风侯发布了新的文献求助10
19秒前
爱撒娇的朋友完成签到,获得积分10
19秒前
欣喜的沛容完成签到,获得积分10
19秒前
小落完成签到 ,获得积分10
20秒前
学术之星发布了新的文献求助10
21秒前
kisa发布了新的文献求助30
22秒前
追寻若冰完成签到 ,获得积分20
22秒前
whoknowsname发布了新的文献求助10
25秒前
25秒前
望春风发布了新的文献求助10
25秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215173
求助须知:如何正确求助?哪些是违规求助? 4390347
关于积分的说明 13669789
捐赠科研通 4252118
什么是DOI,文献DOI怎么找? 2333003
邀请新用户注册赠送积分活动 1330607
关于科研通互助平台的介绍 1284382