Push and pull search for solving constrained multi-objective optimization problems

水准点(测量) 数学优化 计算机科学 进化算法 多目标优化 趋同(经济学) 约束(计算机辅助设计) 集合(抽象数据类型) 帕累托原理 过程(计算) 可行区 最优化问题 数学 经济 几何学 操作系统 经济增长 程序设计语言 地理 大地测量学
作者
Zhun Fan,Wenji Li,Xinye Cai,Hui Li,Cai-Min Wei,Qingfu Zhang,Kalyanmoy Deb,Erik D. Goodman
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:44: 665-679 被引量:381
标识
DOI:10.1016/j.swevo.2018.08.017
摘要

This paper proposes a push and pull search (PPS) framework for solving constrained multi-objective optimization problems (CMOPs). To be more specific, the proposed PPS divides the search process into two different stages: push and pull search stages. In the push stage, a multi-objective evolutionary algorithm (MOEA) is used to explore the search space without considering any constraints, which can help to get across infeasible regions very quickly and to approach the unconstrained Pareto front. Furthermore, the landscape of CMOPs with constraints can be probed and estimated in the push stage, which can be utilized to conduct the parameter setting for the constraint-handling approaches to be applied in the pull stage. Then, a modified form of a constrained multi-objective evolutionary algorithm (CMOEA), with improved epsilon constraint-handling, is applied to pull the infeasible individuals achieved in the push stage to the feasible and non-dominated regions. To evaluate the performance regarding convergence and diversity, a set of benchmark CMOPs and a real-world optimization problem are used to test the proposed PPS (PPS-MOEA/D) and state-of-the-art CMOEAs, including MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, MOEA/D-SR, C-MOEA/D and NSGA-II-CDP. The comprehensive experimental results show that the proposed PPS-MOEA/D achieves significantly better performance than the other six CMOEAs on most of the tested problems, which indicates the superiority of the proposed PPS method for solving CMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助人不犯二枉少年采纳,获得10
1秒前
旋转木马9个完成签到 ,获得积分10
2秒前
积极的靖荷完成签到 ,获得积分10
3秒前
Zzz完成签到,获得积分10
3秒前
3秒前
3237924531完成签到,获得积分10
4秒前
TG303完成签到,获得积分10
5秒前
阿涵发布了新的文献求助10
5秒前
逗逗发布了新的文献求助10
6秒前
FelixChen应助仁爱笑翠采纳,获得10
6秒前
小蘑菇应助沿岸有贝壳采纳,获得10
6秒前
wwww发布了新的文献求助10
6秒前
Junly完成签到 ,获得积分10
7秒前
科研通AI5应助鲜艳的访风采纳,获得10
7秒前
Zzz发布了新的文献求助10
7秒前
小青虫发布了新的文献求助10
8秒前
九儿完成签到 ,获得积分10
8秒前
喵喵666完成签到,获得积分10
8秒前
Lin应助yyy采纳,获得30
9秒前
Maximuszhao完成签到,获得积分10
9秒前
lac完成签到,获得积分20
10秒前
科研通AI5应助zzz采纳,获得10
10秒前
10秒前
粉色完成签到,获得积分10
11秒前
长成大树完成签到,获得积分10
11秒前
小蘑菇应助冷酷的鹏涛采纳,获得10
11秒前
冰魂应助追寻的秋玲采纳,获得10
12秒前
13秒前
李白完成签到,获得积分10
13秒前
13秒前
清脆的若山完成签到,获得积分10
13秒前
14秒前
爆米花应助song采纳,获得30
14秒前
11完成签到,获得积分20
14秒前
15秒前
小蘑菇应助kourosz采纳,获得10
15秒前
15秒前
16秒前
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Deep Learning for Biomedical Image Reconstruction 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837974
求助须知:如何正确求助?哪些是违规求助? 3380164
关于积分的说明 10512727
捐赠科研通 3099729
什么是DOI,文献DOI怎么找? 1707202
邀请新用户注册赠送积分活动 821527
科研通“疑难数据库(出版商)”最低求助积分说明 772685