Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?

分位数 降水 环境科学 气候学 缩小尺度 计量经济学 气候模式 极值理论 耦合模型比对项目 气候变化 统计 气象学 数学 地质学 地理 海洋学
作者
Alex J. Cannon,S. R. Sobie,Trevor Q. Murdock
出处
期刊:Journal of Climate [American Meteorological Society]
卷期号:28 (17): 6938-6959 被引量:1022
标识
DOI:10.1175/jcli-d-14-00754.1
摘要

Abstract Quantile mapping bias correction algorithms are commonly used to correct systematic distributional biases in precipitation outputs from climate models. Although they are effective at removing historical biases relative to observations, it has been found that quantile mapping can artificially corrupt future model-projected trends. Previous studies on the modification of precipitation trends by quantile mapping have focused on mean quantities, with less attention paid to extremes. This article investigates the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices. First, a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles is presented. QDM is compared on synthetic data with detrended quantile mapping (DQM), which is designed to preserve trends in the mean, and with standard quantile mapping (QM). Next, methods are applied to phase 5 of the Coupled Model Intercomparison Project (CMIP5) daily precipitation projections over Canada. Performance is assessed based on precipitation extremes indices and results from a generalized extreme value analysis applied to annual precipitation maxima. QM can inflate the magnitude of relative trends in precipitation extremes with respect to the raw GCM, often substantially, as compared to DQM and especially QDM. The degree of corruption in the GCM trends by QM is particularly large for changes in long period return values. By the 2080s, relative changes in excess of +500% with respect to historical conditions are noted at some locations for 20-yr return values, with maximum changes by DQM and QDM nearing +240% and +140%, respectively, whereas raw GCM changes are never projected to exceed +120%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Wang采纳,获得10
2秒前
Yina完成签到 ,获得积分10
3秒前
芃123发布了新的文献求助10
3秒前
研友_8WO978发布了新的文献求助10
3秒前
尤瑟夫完成签到 ,获得积分10
4秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
4秒前
wwww完成签到 ,获得积分10
6秒前
daheeeee完成签到,获得积分10
7秒前
苹果完成签到,获得积分10
9秒前
10秒前
从容芮应助nav采纳,获得10
12秒前
脑洞疼应助研友_8WO978采纳,获得10
12秒前
Wang完成签到,获得积分10
12秒前
海藻酸完成签到,获得积分10
14秒前
shor0414完成签到 ,获得积分10
15秒前
殷勤的凝海完成签到 ,获得积分10
15秒前
fy1990完成签到 ,获得积分10
18秒前
smottom完成签到,获得积分10
21秒前
顷梦完成签到,获得积分10
22秒前
乐观的星月完成签到 ,获得积分10
22秒前
organic tirrttf完成签到,获得积分10
23秒前
痴情的靖柔完成签到 ,获得积分10
23秒前
芃123完成签到 ,获得积分10
25秒前
25秒前
无奈醉柳完成签到 ,获得积分10
25秒前
Li发布了新的文献求助10
26秒前
lyt010307完成签到,获得积分10
27秒前
石破天惊完成签到,获得积分10
29秒前
minmin完成签到,获得积分10
29秒前
qzp完成签到 ,获得积分10
29秒前
可爱邓邓完成签到 ,获得积分10
30秒前
30秒前
Jaylou完成签到,获得积分10
34秒前
34秒前
豆浆油条完成签到 ,获得积分10
35秒前
36秒前
研友_8WO978发布了新的文献求助10
39秒前
xiaofeiyan完成签到 ,获得积分10
40秒前
黄雪峰发布了新的文献求助10
41秒前
孙刚完成签到 ,获得积分10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784858
求助须知:如何正确求助?哪些是违规求助? 3330118
关于积分的说明 10244374
捐赠科研通 3045503
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557