材料科学
电子线路
电化学
导电体
柔性电子器件
纳米技术
数码产品
电解质
泄漏(经济)
电压
可靠性(半导体)
复合材料
印刷电路板
集电器
弯曲
电容器
纳米材料
灾难性故障
微电子
光电子学
集成电路
电极
金属
电化学电池
计算机科学
失效模式及影响分析
机械工程
作者
Fei Gao,Wei Mo,Ze Ping Zhang,M RONG,Ming Zhang
标识
DOI:10.1002/adfm.202529989
摘要
ABSTRACT Achieving repeatable self‐healing without human intervention in metal circuits remains a critical challenge. Here, we repurpose electrochemical migration, typically a reliability hazard, into a controlled mechanism for intrinsic conductive self‐healing. By optimizing structure of flexible printed circuit boards (PCBs), directional electrochemical migration is allowed to bridge mechanically damaged traces self‐driven by the operational voltage of the PCB itself. The PCBs comprises a healable supramolecular substrate (consists of linear polyurethane and hyperbranched oligomer (LPU/HBO)), Ag circuits, a polyvinyl alcohol isolation layer, gelatin/glycerol/KNO 3 colloidal electrolyte, and an LPU/HBO encapsulation layer. Upon damage, capillary action drives the electrolyte infiltration into cracks, and then promote electrochemical migration between severed wires under working voltage, autonomously reconnecting fractures via metallic dendrite growth. The self‐healing procedure is repeatable, restoring ≈ 100% current in several hours at room temperature, while metal trace can withstand up to 350,000 bending cycles. This work transforms electrochemical migration from a failure mode into a sustainable self‐healing strategy, advancing flexible electronics toward long‐term reliability.
科研通智能强力驱动
Strongly Powered by AbleSci AI