制作
可扩展性
再现性
钙钛矿(结构)
过程(计算)
计算机科学
材料科学
鉴定(生物学)
钥匙(锁)
人工智能
差异(会计)
机器学习
随机森林
纳米技术
数据挖掘
过程变量
过程控制
工艺工程
电子工程
过程建模
估计理论
作者
H W Liu,Kangyan Liu,B. S. Zhang,Z Chen,Yi Yang,Qiang Sun,Ye Tao,Bed Poudel,Kai Wang,Congcong Wu
摘要
ABSTRACT The key challenge in the preparation of perovskite solar cells is to enhance the reproducibility of PSC manufacturing, particularly by better controlling multiple high‐dimensional process parameters. This study proposes a machine learning (ML) approach to efficiently predict and analyze perovskite film fabrication processes. By evaluating five classic ML algorithms on 130 experimental data sets from blade‐coating parameters, the Random Forest (RF) model was identified as the most effective, enabling rapid prediction of over 100,000 parameter sets in just 10 min‐equivalent to 3 years of manual experimentation. The RF model demonstrated strong predictive accuracy, with an R 2 close to 0.8. This approach led to the identification of optimal process parameter combinations, significantly improving the reproducibility of PSCs and reducing performance variance by approximately threefold, thereby advancing the development of scalable manufacturing processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI