电解
类金属
催化作用
电子转移
材料科学
电催化剂
电极
离解(化学)
法拉第效率
Boosting(机器学习)
化学
纳米技术
阴极
金属
无机化学
电解水
电化学
氧化还原
离域电子
过渡金属
解吸
化学工程
燃料电池
作者
Tingting Cui,Wang Yuchao,Rufan Xu,Mengyang Duan,Yanming Yu,Longqian Wang,Guanjie Li,Haiming Han,Haozhi Wang,Yunchuan Tu,Yongpeng Lei,Ming Xu,Ding-Sheng Wang
标识
DOI:10.1002/anie.202516353
摘要
Abstract Reinforcing electronic synergy in dual‐atom catalysts (DACs) is critical yet challenging for boosting electrocatalytic CO 2 reduction (ECR) performances. Herein, we develop a versatile strategy introducing metalloid B to construct B,N co‐coordination dual sites featuring polarized (N–B) n bridges, enforcing electron delocalization between metal centers in DACs. Taking NiFe DACs as an example, the as‐obtained NiFe/BNC achieves 99% CO Faraday efficiency (FE CO ) and 55.7% full‐cell energy efficiency (200 mA cm −2 ) in a membrane electrode assembly (MEA) cell, markedly outperforming the common N‐coordinated counterpart (NiFe/NC) and representing state‐of‐the‐art performance. Moreover, upon scaling the cell area to 100 cm 2 , this catalyst maintains >95% FE CO during high‐current electrolysis at 1–6 A. Even at −53 °C, it sustains >98% FE CO across 50‐250 mA cm −2 , confirming the feasibility for in situ fuel production on Mars. Systematic investigations reveal B,N co‐coordination induces reversed electron transfer (Fe→Ni), distinct from weakly interacting NiFe/NC. This facilitates *COOH formation on electron‐enriched Ni sites and accelerated CO desorption from electron‐deficient Fe sites, synergistically enhancing ECR. Simultaneously, B sites promote water dissociation by adsorbing *OH intermediates, further boosting overall performance. Notably, this strategy shows broad versatility across Ni–Fe, Ni–Cu, Ni–Co, and Ni–Mn systems, opening new avenues for advanced DAC design.
科研通智能强力驱动
Strongly Powered by AbleSci AI