差异进化
计算机科学
病媒控制
差速器(机械装置)
编码(集合论)
支持向量机
数学优化
数学
算法
人工智能
工程类
感应电动机
电气工程
航空航天工程
电压
集合(抽象数据类型)
程序设计语言
作者
Yong Wang,Zixing Cai,Qingfu Zhang
标识
DOI:10.1109/tevc.2010.2087271
摘要
Trial vector generation strategies and control parameters have a significant influence on the performance of differential evolution (DE). This paper studies whether the performance of DE can be improved by combining several effective trial vector generation strategies with some suitable control parameter settings. A novel method, called composite DE (CoDE), has been proposed in this paper. This method uses three trial vector generation strategies and three control parameter settings. It randomly combines them to generate trial vectors. CoDE has been tested on all the CEC2005 contest test instances. Experimental results show that CoDE is very competitive.
科研通智能强力驱动
Strongly Powered by AbleSci AI