The Dynamic and Stochastic Knapsack Problem with Random Sized Items

背包问题 最佳停车 时间范围 数学优化 凸性 计算机科学 单调函数 资源(消歧) 运筹学 持有成本 调度(生产过程) 动态规划 期望值 投资(军事) 资源配置 经济 数学 财务 统计 法学 政治 数学分析 计算机网络 政治学
作者
Anton J. Kleywegt,Jason D. Papastavrou
出处
期刊:Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:49 (1): 26-41 被引量:165
标识
DOI:10.1287/opre.49.1.26.11185
摘要

A resource allocation problem, called the dynamic and stochastic knapsack problem (DSKP), is studied. A known quantity of resource is available, and demands for the resource arrive randomly over time. Each demand requires an amount of resource and has an associated reward. The resource requirements and rewards are unknown before arrival and become known at the time of the demand's arrival. Demands can be either accepted or rejected. If a demand is accepted, the associated reward is received; if a demand is rejected, a penalty is incurred. The problem can be stopped at any time, at which time a terminal value is received that depends on the quantity of resource remaining. A holding cost that depends on the amount of resource allocated is incurred until the process is stopped. The objective is to determine an optimal policy for accepting demands and for stopping that maximizes the expected value (rewards minus costs) accumulated. The DSKP is analyzed for both the infinite horizon and the finite horizon cases. It is shown that the DSKP has an optimal policy that consists of an easily computed threshold acceptance rule and an optimal stopping rule. A number of monotonicity and convexity properties are studied. This problem is motivated by the issues facing a manager of an LTL transportation operation regarding the acceptance of loads and the dispatching of a vehicle. It also has applications in many other areas, such as the scheduling of batch processors, the selling of assets, the selection of investment projects, and yield management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大胆的觅风完成签到 ,获得积分10
1秒前
彭于晏应助甘楽采纳,获得10
3秒前
SHC发布了新的文献求助10
3秒前
4秒前
shkknx发布了新的文献求助10
5秒前
张颖涛发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
growing发布了新的文献求助10
9秒前
9秒前
动人的萝发布了新的文献求助30
10秒前
kuailexianchi发布了新的文献求助10
10秒前
crow完成签到,获得积分10
12秒前
12秒前
安静的板凳完成签到,获得积分10
12秒前
12秒前
13秒前
shkknx完成签到,获得积分10
14秒前
14秒前
长情天川发布了新的文献求助10
14秒前
15秒前
Tourist应助科研通管家采纳,获得150
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
yxh发布了新的文献求助10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得30
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087432
求助须知:如何正确求助?哪些是违规求助? 4302757
关于积分的说明 13408674
捐赠科研通 4128124
什么是DOI,文献DOI怎么找? 2260695
邀请新用户注册赠送积分活动 1264889
关于科研通互助平台的介绍 1199204