背包问题                        
                
                                
                        
                            最佳停车                        
                
                                
                        
                            时间范围                        
                
                                
                        
                            数学优化                        
                
                                
                        
                            凸性                        
                
                                
                        
                            计算机科学                        
                
                                
                        
                            单调函数                        
                
                                
                        
                            资源(消歧)                        
                
                                
                        
                            运筹学                        
                
                                
                        
                            持有成本                        
                
                                
                        
                            调度(生产过程)                        
                
                                
                        
                            动态规划                        
                
                                
                        
                            期望值                        
                
                                
                        
                            投资(军事)                        
                
                                
                        
                            资源配置                        
                
                                
                        
                            经济                        
                
                                
                        
                            数学                        
                
                                
                        
                            财务                        
                
                                
                        
                            统计                        
                
                                
                        
                            法学                        
                
                                
                        
                            政治                        
                
                                
                        
                            数学分析                        
                
                                
                        
                            计算机网络                        
                
                                
                        
                            政治学                        
                
                        
                    
            作者
            
                Anton J. Kleywegt,Jason D. Papastavrou            
         
                    
            出处
            
                                    期刊:Operations Research
                                                         [Institute for Operations Research and the Management Sciences]
                                                        日期:2001-02-01
                                                        卷期号:49 (1): 26-41
                                                        被引量:165
                                 
         
        
    
            
            标识
            
                                    DOI:10.1287/opre.49.1.26.11185
                                    
                                
                                 
         
        
                
            摘要
            
            A resource allocation problem, called the dynamic and stochastic knapsack problem (DSKP), is studied. A known quantity of resource is available, and demands for the resource arrive randomly over time. Each demand requires an amount of resource and has an associated reward. The resource requirements and rewards are unknown before arrival and become known at the time of the demand's arrival. Demands can be either accepted or rejected. If a demand is accepted, the associated reward is received; if a demand is rejected, a penalty is incurred. The problem can be stopped at any time, at which time a terminal value is received that depends on the quantity of resource remaining. A holding cost that depends on the amount of resource allocated is incurred until the process is stopped. The objective is to determine an optimal policy for accepting demands and for stopping that maximizes the expected value (rewards minus costs) accumulated. The DSKP is analyzed for both the infinite horizon and the finite horizon cases. It is shown that the DSKP has an optimal policy that consists of an easily computed threshold acceptance rule and an optimal stopping rule. A number of monotonicity and convexity properties are studied. This problem is motivated by the issues facing a manager of an LTL transportation operation regarding the acceptance of loads and the dispatching of a vehicle. It also has applications in many other areas, such as the scheduling of batch processors, the selling of assets, the selection of investment projects, and yield management.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI