表皮葡萄球菌
金黄色葡萄球菌
微生物学
蜡样芽孢杆菌
化学
肺炎克雷伯菌
细菌
病毒
病菌
大肠杆菌
亚甲蓝
病毒学
生物
生物化学
催化作用
遗传学
基因
光催化
作者
Stefan Reichenberg,Ute Gravemann,Chryslain Sumian,Axel Seltsam
出处
期刊:Vox Sanguinis
[Wiley]
日期:2015-04-20
卷期号:109 (2): 129-137
被引量:6
摘要
Background and Objectives Although most pathogen reduction systems for plasma primarily target viruses, bacterial contamination may also occur. This study aimed to investigate the bacterial reduction capacity of a methylene blue ( MB ) treatment process and its virus inactivation capacity in lipaemic plasma. Materials and Methods Bacterial concentrations in plasma units spiked with different bacterial strains were measured before and after the following steps of the THERAFLEX MB ‐Plasma procedure: leucocyte filtration, MB /light treatment and MB filtration. Virus inactivation was investigated for three virus types in non‐lipaemic, borderline lipaemic and highly lipaemic plasma. Results Leucocyte filtration alone efficiently eliminated most of the tested bacteria by more than 4 logs ( Staphylococcus epidermidis and Staphylococcus aureus ) or to the limit of detection ( LOD ) (≥ 4·8 logs; Escherichia coli, Bacillus cereus and Klebsiella pneumoniae ). MB /light and MB filtration further reduced Staphylococcus epidermidis and Staphylococcus aureus to below the LOD . The small bacterium Brevundimonas diminuta was reduced by 1·7 logs by leucocyte filtration alone, and to below the LOD by additional MB /light treatment and MB filtration (≥ 3·7 logs). Suid herpesvirus 1, bovine viral diarrhoea virus and human immunodeficiency virus 1 were efficiently inactivated by THERAFLEX MB ‐Plasma, independent of the degree of lipaemia. Conclusion THERAFLEX MB ‐Plasma efficiently reduces bacteria, mainly via the integrated filtration system. Its virus inactivation capacity is sufficient to compensate for reduced light transparency due to lipaemia.
科研通智能强力驱动
Strongly Powered by AbleSci AI