Design Optimization of Compound Cylinders Subjected to Autofrettage and Shrink-Fitting Processes

自增强 残余应力 圆柱 结构工程 序列二次规划 有限元法 压力容器 压力(语言学) 材料科学 实验设计 包辛格效应 残余物 工程类 机械工程 复合材料 计算机科学 数学 二次规划 算法 数学优化 可塑性 统计 语言学 哲学
作者
Ossama R. Abdelsalam,Ramin Sedaghati
出处
期刊:Journal of Pressure Vessel Technology-transactions of The Asme [ASME International]
卷期号:135 (2) 被引量:14
标识
DOI:10.1115/1.4007960
摘要

The autofrettage and shrink-fit processes are used to increase the load bearing capacity and fatigue life of the pressure vessels under thermomechanical loads. In this paper, a design optimization methodology has been proposed to identify optimal configurations of a two-layer cylinder subjected to different combinations of shrink-fit and autofrettage processes. The objective is to find the optimal thickness of each layer, autofrettage pressure and radial interference for each shrink-fit, and autofrettage combination in order to increase the fatigue life of the compound cylinder by maximizing the beneficial and minimizing the detrimental residual stresses induced by these processes. A finite element model has been developed in ansys environment to accurately evaluate the tangential stress profile through the thickness of the cylinder. The finite element model is then utilized in combination with design of experiment (DOE) and the response surface method (RSM) to develop a smooth response function which can be effectively used in the design optimization formulation. Finally, genetic algorithm (GA) combined with sequential quadratic programming (SQP) has been used to find global optimum configuration for each combination of autofrettage and shrink-fit processes. The residual stress distributions and the mechanical fatigue life based on the ASME code for high pressure vessels have been calculated for the optimal configurations and then compared. It is found that the combination of shrink-fitting of two base layers then performing double autofrettage (exterior autofrettage prior to interior autofrettage) on the whole assembly can provide higher fatigue life time for both inner and outer layers of the cylinder.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
傲娇时光完成签到,获得积分10
刚刚
隐形曼青应助英勇半双采纳,获得10
刚刚
Homura完成签到,获得积分10
刚刚
Hot完成签到,获得积分10
1秒前
菜菜就爱玩完成签到,获得积分10
1秒前
1秒前
Eli完成签到,获得积分10
1秒前
欣喜谷槐完成签到,获得积分10
1秒前
Majoe完成签到,获得积分10
1秒前
高冰冰完成签到 ,获得积分10
1秒前
1秒前
sennialiu完成签到,获得积分10
1秒前
zhangzhe发布了新的文献求助10
2秒前
2秒前
单纯半山完成签到,获得积分10
2秒前
EnguangChen完成签到,获得积分10
2秒前
2秒前
sxr完成签到,获得积分10
3秒前
上官若男应助薇笑不慌采纳,获得10
3秒前
4秒前
long发布了新的文献求助10
4秒前
爱吃蔬菜完成签到,获得积分10
4秒前
迅速靖仇完成签到,获得积分10
4秒前
乌特拉完成签到 ,获得积分10
4秒前
4秒前
MOMO100完成签到,获得积分10
4秒前
积极剑通发布了新的文献求助30
4秒前
JamesPei应助zjcbk985采纳,获得10
4秒前
shbkmy完成签到,获得积分10
4秒前
MZX完成签到 ,获得积分10
5秒前
传奇3应助锂离子采纳,获得10
5秒前
激昂的千秋完成签到,获得积分10
5秒前
wuxiurong完成签到,获得积分10
5秒前
小火孩完成签到,获得积分10
5秒前
蓝梦一刀完成签到,获得积分10
5秒前
6秒前
小叶发布了新的文献求助10
6秒前
小叶发布了新的文献求助10
6秒前
太阳博士完成签到,获得积分10
6秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503863
求助须知:如何正确求助?哪些是违规求助? 4599332
关于积分的说明 14468093
捐赠科研通 4533261
什么是DOI,文献DOI怎么找? 2484291
邀请新用户注册赠送积分活动 1467531
关于科研通互助平台的介绍 1440323