A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering

化学 轨道轨道 色谱法 质谱法 甲酸 串联质谱法 质量 黄芩 质谱 医学 替代医学 中医药 病理
作者
Xue Qiao,Ru Li,Wei Song,Wen-juan Miao,Jia Liu,Hubiao Chen,De-an Guo,Min Ye
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1441: 83-95 被引量:169
标识
DOI:10.1016/j.chroma.2016.02.079
摘要

Structural identification of natural products by tandem mass spectrometry requires laborious spectral analysis. Herein, we report a targeted post-acquisition data processing strategy, key ion filtering (KIF), to analyze untargeted mass spectral data. This strategy includes four steps: (1) untargeted data acquisition by ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry (UHPLC/orbitrap-MS); (2) construction of a key ion database according to diagnostic MS/MS fragmentations and conservative substructures of natural compounds; (3) high-resolution key ion filtering of the acquired data to recognize substructures; and (4) structural identification of target compounds by analyzing their MS/MS spectra. The herbal medicine Huang-Qin (Scutellaria baicalensis Georgi) was used to illustrate this strategy. Its extract was separated within 20 min on a C18 column (1.8 μm, 2.1×150 mm) eluted with acetonitrile, methanol, and water containing 0.1% formic acid. The compounds were detected in the (-)-ESI mode, and their MS/MS spectra were recorded in the untargeted manner. Key ions were then filtered from the LC/MS data to recognize flavones, flavanones, O-/C-glycosides, and phenylethanoid glycosides. Finally, a total of 132 compounds were identified from Huang-Qin, and 59 of them were reported for the first time. This study provides an efficient data processing strategy to rapidly profile the chemical constituents of complicated herbal extracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shen发布了新的文献求助10
刚刚
Luo发布了新的文献求助10
刚刚
英俊的铭应助aichizizhu采纳,获得10
1秒前
星辰大海应助lll采纳,获得10
1秒前
笨笨的元风完成签到 ,获得积分10
1秒前
1秒前
畅快芝麻完成签到,获得积分10
1秒前
生动的保温杯完成签到,获得积分10
2秒前
SciGPT应助Homura采纳,获得10
6秒前
狂暴之武僧完成签到,获得积分10
6秒前
科研通AI6应助芝麻球ii采纳,获得10
6秒前
裴清关注了科研通微信公众号
7秒前
Thhhh发布了新的文献求助20
7秒前
7秒前
夏侯德东完成签到,获得积分10
9秒前
白菜完成签到,获得积分10
9秒前
junjiecheng1完成签到,获得积分10
10秒前
10秒前
生产队的LV完成签到 ,获得积分10
10秒前
10秒前
嘿HEI完成签到 ,获得积分10
11秒前
丘比特应助sophieCCM0302采纳,获得10
11秒前
laura发布了新的文献求助10
12秒前
小彭完成签到 ,获得积分10
13秒前
纣王发布了新的文献求助10
14秒前
Criminology34应助Luo采纳,获得10
14秒前
深情安青应助老实易蓉采纳,获得10
15秒前
齐齐发布了新的文献求助10
16秒前
17秒前
18秒前
KK完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
海蓝云天应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545279
求助须知:如何正确求助?哪些是违规求助? 4631077
关于积分的说明 14619814
捐赠科研通 4572889
什么是DOI,文献DOI怎么找? 2507113
邀请新用户注册赠送积分活动 1484036
关于科研通互助平台的介绍 1455326