计算机科学
可穿戴计算机
书桌
隐马尔可夫模型
人工智能
美国手语
手语
词典
判决
词(群论)
语音识别
语法
计算机视觉
自然语言处理
语言学
哲学
嵌入式系统
操作系统
作者
Thad Starner,Joshua Weaver,Alex Pentland
摘要
We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American sign language (ASL) using a single camera to track the user's unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy. The second system mounts the camera in a cap worn by the user and achieves 98 percent accuracy (97 percent with an unrestricted grammar). Both experiments use a 40-word lexicon.
科研通智能强力驱动
Strongly Powered by AbleSci AI