The pathogenesis and pathophysiology of gestational diabetes mellitus: Deductions from a three-part longitudinal metabolomics study in China

妊娠期糖尿病 糖尿病 医学 怀孕 2型糖尿病 胰岛素抵抗 肥胖 内分泌学 产科 生物信息学 内科学 妊娠期 生物 遗传学
作者
Kai P. Law,Hua Zhang
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:468: 60-70 被引量:93
标识
DOI:10.1016/j.cca.2017.02.008
摘要

Gestational diabetes mellitus (GDM) is a form of diabetes that is first recognised during pregnancy, with no evidence of pre-existing type 1 or type 2 diabetes. The prevalence of GDM has been rising steadily over the past few decades, coinciding with the ongoing epidemic of obesity and type 2 diabetes. Although GDM normally disappears after delivery, women who have been previously diagnosed with GDM are at a greater risk of developing gestational diabetes in subsequent pregnancies, and type 2 diabetes later in life. Infants born to mothers with GDM also have a higher risk of developing type 2 diabetes in their teens or early adulthood. There are many possible causes of insulin resistance, and multiple metabolic aberrants are known to be involved in the development of different forms of diabetes. Increasing evidence suggests that different forms of diabetes share common pathogenesis and pathophysiological dysregulation resulting from a progressive β-cell demise or dysfunction. The outcome manifests clinically as hyperglycaemia. The development of GDM may represent a very early stage of the progression to type 2 diabetes that is being manifested under the stresses of pregnancy. However, the exact mechanisms of GDM development are not clearly understood. Based on the results of a three-part longitudinal metabolomics study of Chinese pregnant women, in combination with the current literature, a new model of GDM development is proposed to outline the biomolecular mechanisms underpinning GDM. A possible cause of GDM is obesity, which is an important clinical risk factor for the development of diabetes. Women who develop GDM generally have higher body mass indices when compared with healthy pregnant women, and obesity can induce low-grade inflammation. Chronic low-grade inflammation induces the synthesis of xanthurenic acid, which is known to be associated with the development of type 2 diabetes, pre-diabetes and GDM. Hyperglycaemia accelerates purine nucleotide synthesis, which in turn stimulates nucleotide breakdown and increases the concentration of nucleotide degradation products, including superoxide molecules and uric acid. Reactive oxygen species and excessive intracellular uric acid may also have direct effects on the development of the disease or further deterioration of the condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狐狸小姐发布了新的文献求助10
刚刚
yangwl完成签到,获得积分20
1秒前
动漫大师发布了新的文献求助10
1秒前
脑洞疼应助洁净的闭月采纳,获得10
2秒前
2秒前
06完成签到,获得积分10
2秒前
科研通AI5应助hhm采纳,获得10
3秒前
蔡毛线完成签到,获得积分10
3秒前
duts完成签到 ,获得积分10
3秒前
chinawei110完成签到,获得积分10
4秒前
4秒前
4秒前
张世奇发布了新的文献求助10
5秒前
123456789完成签到,获得积分10
5秒前
冷笑完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
快乐的心情完成签到,获得积分10
6秒前
wy.he应助听见采纳,获得10
7秒前
7秒前
A.y.w完成签到,获得积分10
7秒前
共享精神应助qixing采纳,获得10
7秒前
7秒前
biomds完成签到,获得积分10
7秒前
务实的大神完成签到,获得积分10
8秒前
温暖向南发布了新的文献求助10
8秒前
翊星完成签到,获得积分0
9秒前
10秒前
以琳完成签到,获得积分10
10秒前
隐形衬衫完成签到 ,获得积分10
11秒前
11秒前
zxping发布了新的文献求助10
11秒前
12秒前
任我行完成签到,获得积分10
12秒前
科研通AI5应助ip07in13采纳,获得10
13秒前
Hello应助hhm采纳,获得10
14秒前
14秒前
凡仔完成签到,获得积分20
14秒前
nns发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793195
求助须知:如何正确求助?哪些是违规求助? 3337889
关于积分的说明 10287559
捐赠科研通 3054449
什么是DOI,文献DOI怎么找? 1675991
邀请新用户注册赠送积分活动 804004
科研通“疑难数据库(出版商)”最低求助积分说明 761681