Determination of the Thin-Film Structure of Zwitterion-Doped Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate): A Neutron Reflectivity Study.

聚(3,4-亚乙基二氧噻吩) 材料科学 佩多:嘘 薄膜 化学工程 兴奋剂 分析化学(期刊) 电导率 导电聚合物 聚合物
作者
Gabriel E. Pérez,Gabriel Bernardo,Hugo Gaspar,Joshaniel F. K. Cooper,Francesco Bastianini,Andrew J. Parnell,Alan D. F. Dunbar
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (14): 13803-13811 被引量:4
标识
DOI:10.1021/acsami.9b02700
摘要

Doping poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity; however, little is known about the thin-film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with different concentrations of the zwitterion 3-( N, N dimethylmyristylammonio)propanesulfonate (DYMAP), and its effect on the bulk structure of the films was characterized by neutron reflectivity. The results show that at a low doping concentration, the film separates into a quasi-bilayer structure with lower roughness (10%), increased thickness (18%), and lower electrical conductivity compared to the undoped sample. However, when the doping concentration increases, the film forms into a homogeneous layer and experiences an enhanced conductivity by more than an order of magnitude, a 20% smoother surface, and a 60% thickness increase relative to the pristine sample. Atomic force microscopy (AFM) and profilometry measurements confirmed these findings, and the AFM height and phase images showed the gradually increasing presence of DYMAP on the film surface as a function of the concentration. Neutron reflectivity also showed that the quasi-bilayer structure of the lowest concentration-doped PEDOT:PSS is separated by a graded rather than a well-defined interface. Our findings provide an understanding of the layer structure modification for doped PEDOT:PSS films which should prove important for device applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李正纲发布了新的文献求助10
1秒前
罗莹完成签到,获得积分10
1秒前
Lijia_YAO发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
waka发布了新的文献求助10
3秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
4秒前
于大本事发布了新的文献求助10
4秒前
梁业松完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
听曲散步完成签到,获得积分10
6秒前
一叶知秋应助nnnd77采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
坐看云起发布了新的文献求助10
7秒前
罗莹发布了新的文献求助10
8秒前
tll发布了新的文献求助30
8秒前
TS昵昵发布了新的文献求助10
9秒前
10秒前
加油完成签到,获得积分10
11秒前
11秒前
rudjs发布了新的文献求助10
12秒前
12秒前
12秒前
Schwann翠星石完成签到,获得积分10
12秒前
William发布了新的文献求助10
12秒前
13秒前
CipherSage应助玉雪晴儿采纳,获得10
13秒前
科研通AI5应助一只柯羊采纳,获得10
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747245
求助须知:如何正确求助?哪些是违规求助? 4094384
关于积分的说明 12667798
捐赠科研通 3806551
什么是DOI,文献DOI怎么找? 2101427
邀请新用户注册赠送积分活动 1126782
关于科研通互助平台的介绍 1003379