Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI

计算机科学 人工智能 分割 衰减校正 Sørensen–骰子系数 深度学习 地图集(解剖学) 核医学 磁共振成像 模式识别(心理学) 放射科 医学 正电子发射断层摄影术 图像分割 解剖
作者
Hossein Arabi,Guodong Zeng,Guoyan Zheng,Habib Zaidi
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:46 (13): 2746-2759 被引量:77
标识
DOI:10.1007/s00259-019-04380-x
摘要

Quantitative PET/MR imaging is challenged by the accuracy of synthetic CT (sCT) generation from MR images. Deep learning-based algorithms have recently gained momentum for a number of medical image analysis applications. In this work, a novel sCT generation algorithm based on deep learning adversarial semantic structure (DL-AdvSS) is proposed for MRI-guided attenuation correction in brain PET/MRI.The proposed DL-AdvSS algorithm exploits the ASS learning framework to constrain the synthetic CT generation process to comply with the extracted structural features from CT images. The proposed technique was evaluated through comparison to an atlas-based sCT generation method (Atlas), previously developed for MRI-only or PET/MRI-guided radiation planning. Moreover, the commercial segmentation-based approach (Segm) implemented on the Philips TF PET/MRI system was included in the evaluation. Clinical brain studies of 40 patients who underwent PET/CT and MR imaging were used for the evaluation of the proposed method under a two-fold cross validation scheme.The accuracy of cortical bone extraction and CT value estimation were investigated for the three different methods. Atlas and DL-AdvSS exhibited similar cortical bone extraction accuracy resulting in a Dice coefficient of 0.78 ± 0.07 and 0.77 ± 0.07, respectively. Likewise, DL-AdvSS and Atlas techniques performed similarly in terms of CT value estimation in the cortical bone region where a mean error (ME) of less than -11 HU was obtained. The Segm approach led to a ME of -1025 HU. Furthermore, the quantitative analysis of corresponding PET images using the three approaches assuming the CT-based attenuation corrected PET (PETCTAC) as reference demonstrated comparative performance of DL-AdvSS and Atlas techniques with a mean standardized uptake value (SUV) bias less than 4% in 63 brain regions. In addition, less that 2% SUV bias was observed in the cortical bone when using Atlas and DL-AdvSS approaches. However, Segm resulted in 14.7 ± 8.9% SUV underestimation in the cortical bone.The proposed DL-AdvSS approach demonstrated competitive performance with respect to the state-of-the-art atlas-based technique achieving clinically tolerable errors, thus outperforming the commercial segmentation approach used in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李呆完成签到,获得积分10
1秒前
高大以南完成签到,获得积分10
1秒前
shanshan123458完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
王其超发布了新的文献求助10
2秒前
英姑应助柑橘采纳,获得10
3秒前
4秒前
5秒前
5秒前
6秒前
8秒前
晾猫人发布了新的文献求助10
9秒前
王其超完成签到,获得积分10
10秒前
晾猫人发布了新的文献求助10
10秒前
晾猫人发布了新的文献求助10
10秒前
10秒前
11秒前
CodeCraft应助闪光魔法暴龙采纳,获得10
11秒前
勇敢牛牛发布了新的文献求助30
11秒前
Tanghx发布了新的文献求助10
12秒前
lpjianai168发布了新的文献求助80
13秒前
小龙儿发布了新的文献求助10
14秒前
冯紫淇完成签到,获得积分10
15秒前
HQZ完成签到,获得积分10
15秒前
16秒前
孟浩然完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
小余同学发布了新的文献求助20
17秒前
上官若男应助小龙儿采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得30
18秒前
iNk应助科研通管家采纳,获得20
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
小二郎应助科研通管家采纳,获得30
18秒前
ding应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4245717
求助须知:如何正确求助?哪些是违规求助? 3778912
关于积分的说明 11864384
捐赠科研通 3432745
什么是DOI,文献DOI怎么找? 1883900
邀请新用户注册赠送积分活动 935395
科研通“疑难数据库(出版商)”最低求助积分说明 841913