Machine Learning Algorithms Utilizing Functional Respiratory Imaging May Predict COPD Exacerbations

慢性阻塞性肺病 计算机科学 医学 呼吸系统 人工智能 机器学习 算法 内科学
作者
Maarten Lanclus,Johan Clukers,Cedric Van Holsbeke,Wim Vos,Glenn Leemans,Birgit Holbrechts,Katherine Barboza,Wilfried De Backer,Jan De Backer
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (9): 1191-1199 被引量:33
标识
DOI:10.1016/j.acra.2018.10.022
摘要

Rationale and Objectives Acute chronic obstructive pulmonary disease exacerbations (AECOPD) have a significant negative impact on the quality of life and accelerate progression of the disease. Functional respiratory imaging (FRI) has the potential to better characterize this disease. The purpose of this study was to identify FRI parameters specific to AECOPD and assess their ability to predict future AECOPD, by use of machine learning algorithms, enabling a better understanding and quantification of disease manifestation and progression. Materials and Methods A multicenter cohort of 62 patients with COPD was analyzed. FRI obtained from baseline high resolution CT data (unenhanced and volume gated), clinical, and pulmonary function test were analyzed and incorporated into machine learning algorithms. Results A total of 11 baseline FRI parameters could significantly distinguish ( p < 0.05) the development of AECOPD from a stable period. In contrast, no baseline clinical or pulmonary function test parameters allowed significant classification. Furthermore, using Support Vector Machines, an accuracy of 80.65% and positive predictive value of 82.35% could be obtained by combining baseline FRI features such as total specific image-based airway volume and total specific image-based airway resistance, measured at functional residual capacity. Patients who developed an AECOPD, showed significantly smaller airway volumes and (hence) significantly higher airway resistances at baseline. Conclusion This study indicates that FRI is a sensitive tool (PPV 82.35%) for predicting future AECOPD on a patient specific level in contrast to classical clinical parameters. Acute chronic obstructive pulmonary disease exacerbations (AECOPD) have a significant negative impact on the quality of life and accelerate progression of the disease. Functional respiratory imaging (FRI) has the potential to better characterize this disease. The purpose of this study was to identify FRI parameters specific to AECOPD and assess their ability to predict future AECOPD, by use of machine learning algorithms, enabling a better understanding and quantification of disease manifestation and progression. A multicenter cohort of 62 patients with COPD was analyzed. FRI obtained from baseline high resolution CT data (unenhanced and volume gated), clinical, and pulmonary function test were analyzed and incorporated into machine learning algorithms. A total of 11 baseline FRI parameters could significantly distinguish ( p < 0.05) the development of AECOPD from a stable period. In contrast, no baseline clinical or pulmonary function test parameters allowed significant classification. Furthermore, using Support Vector Machines, an accuracy of 80.65% and positive predictive value of 82.35% could be obtained by combining baseline FRI features such as total specific image-based airway volume and total specific image-based airway resistance, measured at functional residual capacity. Patients who developed an AECOPD, showed significantly smaller airway volumes and (hence) significantly higher airway resistances at baseline. This study indicates that FRI is a sensitive tool (PPV 82.35%) for predicting future AECOPD on a patient specific level in contrast to classical clinical parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
猪猪hero应助科研通管家采纳,获得10
刚刚
刚刚
充电宝应助懒洋洋的猫采纳,获得10
刚刚
莫宝完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI6.1应助徐嘎嘎采纳,获得10
2秒前
木木发布了新的文献求助30
2秒前
3秒前
英俊的铭应助caoyy采纳,获得10
5秒前
wanglijuan发布了新的文献求助20
6秒前
懒洋洋的猫完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
jimmy发布了新的文献求助10
13秒前
Akim应助阔达志泽采纳,获得30
13秒前
14秒前
abcd发布了新的文献求助10
14秒前
顾矜应助温良恭俭让采纳,获得10
14秒前
oaix发布了新的文献求助10
14秒前
朴实小刺猬关注了科研通微信公众号
15秒前
stardust314应助莫123采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
LLLUIUI发布了新的文献求助10
17秒前
内向尔安发布了新的文献求助10
17秒前
勤劳小蚂蚁完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879