计算机科学
卷积神经网络
领域(数学分析)
人工智能
眼动
跟踪(教育)
模式识别(心理学)
二进制数
代表(政治)
集合(抽象数据类型)
图层(电子)
构造(python库)
二元分类
深度学习
支持向量机
数学
数学分析
政治
算术
有机化学
化学
程序设计语言
法学
教育学
政治学
心理学
作者
Hyeonseob Nam,Bohyung Han
出处
期刊:Cornell University - arXiv
日期:2015-01-01
被引量:80
标识
DOI:10.48550/arxiv.1510.07945
摘要
We propose a novel visual tracking algorithm based on the representations from a discriminatively trained Convolutional Neural Network (CNN). Our algorithm pretrains a CNN using a large set of videos with tracking ground-truths to obtain a generic target representation. Our network is composed of shared layers and multiple branches of domain-specific layers, where domains correspond to individual training sequences and each branch is responsible for binary classification to identify the target in each domain. We train the network with respect to each domain iteratively to obtain generic target representations in the shared layers. When tracking a target in a new sequence, we construct a new network by combining the shared layers in the pretrained CNN with a new binary classification layer, which is updated online. Online tracking is performed by evaluating the candidate windows randomly sampled around the previous target state. The proposed algorithm illustrates outstanding performance compared with state-of-the-art methods in existing tracking benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI