Nanostructured Mn-based oxides as high-performance cathodes for next generation Li-ion batteries

阴极 材料科学 氧化物 电化学 法拉第效率 纳米技术 化学工程 锂(药物) 电极 冶金 化学 电气工程 工程类 内分泌学 医学 物理化学
作者
Guodong Hao,Qinzhi Lai,Hongzhang Zhang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:59: 547-571 被引量:38
标识
DOI:10.1016/j.jechem.2020.11.035
摘要

Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries, but the practical applications have been limited because of severe capacity deterioration (such as LiMnO2 and LiMn2O4) as well as further complications from successive structure changes during cycling, low initial coulombic efficiency (such as Li-rich cathode) and oxidization of organic carbonate solvents at high charge potential (such as LiNi0.5Mn1.5O4). Large amounts of efforts have been concentrated on resolving these issues towards practical applications, and many vital progresses have been carried out. Hence, the primary target of this review is focused on different proposed strategies and breakthroughs to enhance the rate performance and cycling stability of nanostructured Mn-based oxide cathode materials for Li-ion batteries, including morphology control, ion doping, surface coatings, composite construction. The combination of delicate architectures with conductive species represents the perspective ways to enhance the conductivity of the cathode materials and further buffer the structure transformation and strain during cycling. At last, based on the elaborated progress, several perspectives of Mn-based oxide cathodes are summarized, and some possible attractive strategies and future development directions of Mn-based oxide cathodes with enhanced electrochemical properties are proposed. The review will offer a detailed introduction of various strategies enhancing electrochemical performance and give a novel viewpoint to shed light on the future innovation in Mn-based oxide cathode materials, which benefits the design and construction of high-performance Mn-based oxide cathode materials in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾泓跃完成签到 ,获得积分10
1秒前
5秒前
狂野的钻石完成签到 ,获得积分10
8秒前
祯果粒发布了新的文献求助10
8秒前
sun完成签到,获得积分10
15秒前
16秒前
躺了一天关注了科研通微信公众号
20秒前
爱刷牙的小熊完成签到 ,获得积分10
21秒前
东郭一斩完成签到,获得积分10
25秒前
weishan完成签到,获得积分10
27秒前
小林完成签到 ,获得积分10
28秒前
29秒前
31秒前
夜夕发布了新的文献求助10
33秒前
Sammy完成签到,获得积分10
33秒前
ANON_TOKYO完成签到,获得积分10
34秒前
35秒前
SciGPT应助sw采纳,获得10
36秒前
tzjz_zrz完成签到,获得积分10
37秒前
Hello应助chenhuiqian采纳,获得10
37秒前
科目三应助Atalent采纳,获得10
37秒前
pluto应助kyt采纳,获得10
39秒前
一只东北鸟完成签到 ,获得积分10
40秒前
Umar发布了新的文献求助10
40秒前
慕青应助lemontrree采纳,获得10
41秒前
43秒前
开放馒头完成签到,获得积分10
44秒前
zizhuo2完成签到,获得积分10
46秒前
Be_Miracle发布了新的文献求助10
47秒前
寂寞的菲鹰完成签到 ,获得积分20
47秒前
欢喜的绝义完成签到 ,获得积分10
53秒前
西吴完成签到 ,获得积分10
55秒前
Elio完成签到 ,获得积分10
1分钟前
顾矜应助111采纳,获得10
1分钟前
自由如风完成签到 ,获得积分10
1分钟前
1分钟前
图喵喵完成签到,获得积分10
1分钟前
Jaylou完成签到,获得积分10
1分钟前
1分钟前
面包会有的完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825591
求助须知:如何正确求助?哪些是违规求助? 3367764
关于积分的说明 10447731
捐赠科研通 3087164
什么是DOI,文献DOI怎么找? 1698468
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973