阴极
材料科学
电解质
镍
煅烧
化学工程
快离子导体
相容性(地球化学)
电极
复合材料
化学
冶金
物理化学
生物化学
工程类
催化作用
作者
Zhikun Zhao,Ziyue Wen,Xinghui Liu,Hao Yang,Shi Chen,Chunli Li,Haijian Lv,Feng Wu,Borong Wu,Daobin Mu
标识
DOI:10.1016/j.cej.2020.127031
摘要
Poor interfacial contact and severe polarization of nickel-rich cathode materials are crucial problems that must be solved in the development of nickel-rich cathode/garnet-type electrolyte solid-state batteries. Herein, a binder-like Li3PO4 is introduced via an in-situ calcination process to build a compatible and Li+-conductive self-integrated layer of Li6.4La3Zr1.4Ta0.6O12-Li3PO4 on LiNi0.8Co0.1Mn0.1O2 cathode material, with a newly calculation method for estimating the interface compatibility theoretically. In addition, the routine helps weaken the space charge layer of active material commonly inevitable in the case, as demonstrated by calculation of Density Functional Theory and Atomic force microscopy analysis. With the interface engineering, the in-situ generated Li3PO4 tightly fix Li6.4La3Zr1.4Ta0.6O12 on LiNi0.8Co0.1Mn0.1O2, improving the compatibility between LiNi0.8Co0.1Mn0.1O2 cathode material and the solid electrolyte Li6.4La3Zr1.4Ta0.6O12. As a result, the interface-engineered LiNi0.8Co0.1Mn0.1O2/Li6.4La3Zr1.4Ta0.6O12 solid state battery exhibits an initial discharge capacity of 188.8 mAh g−1 at 0.2C (40 mA g−1). Even at 1C, its retention still remained 91.6% (initial value of 130 mAh g−1) after 100 cycles. The SSBs could also work well under high temperature, delivering high initial discharge capacities of 153.4 mAh g−1 (55 °C) and 149.6 mAh g−1 (80 °C) at 1C, respectively. The work provides an effective strategy to improve NCM811-LP-LLZTO SSBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI