控制理论(社会学)
离群值
计算机科学
先验与后验
鉴定(生物学)
噪音(视频)
观察员(物理)
前馈
非线性系统
系统标识
线性模型
迭代法
机器人
迭代学习控制
迭代加权最小二乘法
控制器(灌溉)
最小二乘函数近似
控制工程
数学优化
非线性最小二乘法
人工智能
算法
工程类
数据建模
机器学习
数学
估计理论
控制(管理)
农学
统计
估计员
植物
哲学
量子力学
物理
数据库
生物
图像(数学)
认识论
作者
Yong Han,Jianhua Wu,Chao Liu,Zhenhua Xiong
标识
DOI:10.1109/tro.2020.2990368
摘要
Dynamic model has broad applications in motion planning, feedforward controller design, and disturbance observer design. Particularly, with the increasing application of model-based control in industrial robots, there has been a resurgence of research interest in accurate identification of dynamic models. However, on the one hand, most existing identification methods directly rely on least squares or weighted least squares (WLS), which suffer from outliers and could lead to physical infeasible solutions. On the other hand, nonlinearity of the friction model is seldom treated in a unified way with linear regression. Moreover, recent researches have shown that proper exciting trajectories are crucial to the identification accuracy, but few of previous works take measurement noise into consideration when optimizing the exciting trajectories. In this article, we propose an iterative approach which integrates WLS, iteratively reweighted least squares with linear matrix inequality constraints, and nonlinear friction models so that the above-mentioned issues can be properly solved altogether. Our research also reveals that performance can be improved by including priori knowledge of measurement noise in the optimization of exciting trajectories. The proposed approach is supported by experimental analysis of four different combinations within the framework on a 6-DoF industrial robot.
科研通智能强力驱动
Strongly Powered by AbleSci AI