Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification

深度学习 分类器(UML) 人工智能 选择(遗传算法) 计算机科学 模式识别(心理学) 上下文图像分类 机器学习 图像(数学)
作者
Bolei Xu,Jingxin Liu,Xianxu Hou,Bozhi Liu,Jon Garibaldi,Ian O. Ellis,Andrew Green,Linlin Shen,Guoping Qiu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 1930-1941 被引量:50
标识
DOI:10.1109/tmi.2019.2962013
摘要

Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the deep learning model is computationally expensive, while resizing the original image to achieve low resolution incurs information loss. Some hard-attention based approaches have emerged to select possible lesion regions from images to avoid processing the original image. However, these hard-attention based approaches usually take a long time to converge with weak guidance, and valueless patches may be trained by the classifier. To overcome this problem, we propose a deep selective attention approach that aims to select valuable regions in the original images for classification. In our approach, a decision network is developed to decide where to crop and whether the cropped patch is necessary for classification. These selected patches are then trained by the classification network, which then provides feedback to the decision network to update its selection policy. With such a co-evolution training strategy, we show that our approach can achieve a fast convergence rate and high classification accuracy. Our approach is evaluated on a public breast cancer histopathological image database, where it demonstrates superior performance compared to state-of-the-art deep learning approaches, achieving approximately 98% classification accuracy while only taking 50% of the training time of the previous hard-attention approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Helium发布了新的文献求助10
1秒前
1秒前
wu完成签到,获得积分10
1秒前
Shelley完成签到,获得积分10
1秒前
烟花应助追寻紫安采纳,获得10
1秒前
顾矜应助火星上的汲采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
呆萌香菇发布了新的文献求助10
6秒前
6秒前
7秒前
莫名乐乐完成签到,获得积分10
8秒前
高大雁兰完成签到,获得积分10
9秒前
婷婷发布了新的文献求助20
9秒前
魏坤琳发布了新的文献求助10
10秒前
GJL完成签到,获得积分10
11秒前
大模型应助奋斗静蕾采纳,获得10
12秒前
mariawang发布了新的文献求助10
12秒前
青橘短衫发布了新的文献求助10
12秒前
14秒前
动漫大师发布了新的文献求助10
16秒前
16秒前
Lucas应助青橘短衫采纳,获得10
18秒前
zho应助Helium采纳,获得10
18秒前
18秒前
行不通发布了新的文献求助10
18秒前
xxx完成签到 ,获得积分10
20秒前
魏坤琳完成签到,获得积分10
22秒前
自信若之完成签到,获得积分10
22秒前
自信鑫鹏完成签到,获得积分10
22秒前
23秒前
烟花应助自信若之采纳,获得10
25秒前
CNAxiaozhu7完成签到,获得积分10
26秒前
一颗煤炭完成签到 ,获得积分10
28秒前
28秒前
今天开心吗完成签到 ,获得积分10
29秒前
祥子的骆驼完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779522
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220898
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668632
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522