已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Named Entity Recognition and Relation Extraction

计算机科学 关系(数据库) 水准点(测量) 人工智能 关系抽取 钥匙(锁) 命名实体识别 深度学习 数据科学 非结构化数据 鉴定(生物学) 光学(聚焦) 集合(抽象数据类型) 信息抽取 情报检索 大数据 数据挖掘 任务(项目管理) 程序设计语言 植物 计算机安全 管理 大地测量学 物理 生物 光学 经济 地理
作者
Zara Nasar,Syed Waqar Jaffry,Muhammad Kamran Malik
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (1): 1-39 被引量:133
标识
DOI:10.1145/3445965
摘要

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助段玉杰采纳,获得10
1秒前
meng完成签到 ,获得积分10
3秒前
tufei完成签到,获得积分10
4秒前
zjz发布了新的文献求助10
4秒前
nuonuo完成签到,获得积分20
4秒前
6秒前
6秒前
加菲丰丰举报求助违规成功
11秒前
望除举报求助违规成功
11秒前
HEAUBOOK举报求助违规成功
11秒前
11秒前
科研女仆完成签到 ,获得积分10
11秒前
怡书陈完成签到 ,获得积分10
11秒前
11秒前
媛媛发布了新的文献求助10
12秒前
工大搬砖战神完成签到,获得积分10
15秒前
15秒前
16秒前
段玉杰发布了新的文献求助10
18秒前
开心夏真完成签到,获得积分10
22秒前
可爱的函函应助刘燕采纳,获得10
23秒前
nuonuo发布了新的文献求助30
23秒前
1461完成签到 ,获得积分10
23秒前
加菲丰丰举报求助违规成功
24秒前
望除举报求助违规成功
24秒前
HEAUBOOK举报求助违规成功
24秒前
24秒前
serena完成签到,获得积分10
25秒前
27秒前
27秒前
如约而至完成签到 ,获得积分10
28秒前
Perion完成签到 ,获得积分10
29秒前
虚幻沛菡完成签到 ,获得积分10
29秒前
花开发布了新的文献求助10
30秒前
禹卓发布了新的文献求助10
31秒前
32秒前
hhhhhhhhhh完成签到 ,获得积分10
33秒前
34秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491