Satellite Estimation of Dissolved Carbon Dioxide Concentrations in China’s Lake Taihu

环境科学 二氧化碳 溶解有机碳 估计 中国 卫星 环境化学 环境工程 化学 地理 工程类 航空航天工程 考古 有机化学 系统工程
作者
Tianci Qi,Qitao Xiao,Zhigang Cao,Ming Shen,Jinge Ma,Dong Liu,Hongtao Duan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (21): 13709-13718 被引量:40
标识
DOI:10.1021/acs.est.0c04044
摘要

Lakes play an important role in the global carbon cycle; however, there are still large uncertainties in the estimation of global lake carbon emission due to the limitations in conducting field surveys at large geographic scales. Using long-term Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery and field observation data in eutrophic Lake Taihu, we developed a novel approach to estimate the concentration of dissolved carbon dioxide (cCO2) in lakes. Based on the MODIS-derived chlorophyll-a concentration, lake surface temperature, diffuse attenuation coefficient of photosynthetically active radiation, and photosynthetically active radiation, a spatially explicit cCO2 model was developed using multivariate quadratic polynomial regression (coefficient of determination (R2) = 0.84, root-mean-square error (RMSE) = 11.81 μmol L–1, unbiased percent difference (UPD) = 22.46%). Monte Carlo simulations indicated that the model is stable with relatively small deviations in cCO2 estimates caused by input variables (UPD = 26.14%). MODIS data from 2003 to 2018 showed a significant declining trend (0.42 μmol L–1 yr–1, p < 0.05) in the annual mean cCO2. This was associated with a complex balance between the increasing algae biomass and decreasing external inputs of inorganic carbon, nutrients, and organic matter. The high spatiotemporal variabilities in cCO2 were attributed to river inputs and seasonal changes in temperature and algae biomass. The study shows that satellite remote sensing can play an important role in the field of inland water carbon cycling, providing timely much-needed insights into the drivers of the spatial and temporal changes in dissolved CO2 concentrations in inland waters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝如之完成签到,获得积分10
刚刚
刚刚
1秒前
小黑板发布了新的文献求助10
1秒前
英俊的铭应助shisong采纳,获得10
1秒前
莫菲特发布了新的文献求助10
2秒前
苏黎世完成签到,获得积分10
2秒前
陶醉妙晴关注了科研通微信公众号
2秒前
Cindy发布了新的文献求助10
2秒前
2秒前
爱睡午觉发布了新的文献求助10
4秒前
4秒前
5秒前
顾矜应助万能的小叮当采纳,获得10
5秒前
6秒前
orixero应助科研养猫猫采纳,获得10
6秒前
Hello应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
calm完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
chenfprich发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
葱葱不吃葱完成签到 ,获得积分10
7秒前
蛇虫鼠蚁应助科研通管家采纳,获得10
7秒前
7秒前
jiangjiang应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
liuliu75发布了新的文献求助10
7秒前
所所应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
superxiao应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得20
7秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818315
求助须知:如何正确求助?哪些是违规求助? 3361444
关于积分的说明 10412885
捐赠科研通 3079695
什么是DOI,文献DOI怎么找? 1691656
邀请新用户注册赠送积分活动 814517
科研通“疑难数据库(出版商)”最低求助积分说明 768189