Recognition of breathprints of lung cancer and chronic obstructive pulmonary disease using the Aeonose® electronic nose

慢性阻塞性肺病 医学 肺病 肺癌 内科学 电子鼻 曲线下面积 胃肠病学 人工智能 计算机科学
作者
Ekaterina Krauss,Jana Haberer,Guillermo Barreto,Maria Degen,Werner Seeger,Andreas Güenther
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:14 (4): 046004-046004 被引量:24
标识
DOI:10.1088/1752-7163/ab8c50
摘要

There is a high unmet need in a non-invasive screening of lung cancer (LC). We conducted this single-center trial to evaluate the effectiveness of the electronic nose Aeonose ® in LC recognition.Exhaled volatile organic compound (VOC) signatures were collected by Aeonose ® in 42 incident and 78 prevalent LC patients, of them 29 LC patients in complete remission (LC CR), 33 healthy controls (HC) and 23 COPD patients. By dichotomous comparison of VOC's between incident LC and HC, a discriminating algorithm was established and also applied to LC CR and COPD subjects. Area under Curve (AUC), sensitivity, specificity and Matthews's correlation coefficient (MC) were used to interpret the data.The established algorithm of Aeonose ® signature allowed safe separation of LC and HC, showing an AUC of 0.92, sensitivity of 0.84 and a specificity of 0.97. When tested in a blinded fashion, the device recognized 19 out of 29 LC CR patients (=65.5%) as LC-positive, of which only five developed recurrent LC later on (after 18.6 months [Formula: see text]; mean value [Formula: see text]). Unfortunately, the algorithm also recognized 11 of 24 COPD patients as being LC positive (with only one of the 24 COPD patients developing LC 56 months after the measurement).The Aeonose ® revealed some potential in distinguishing LC from HC, however, with low specificity when applying the algorithm in a blinded fashion to other disease cohorts. We conclude that relevant VOC signals originating from comorbidities in LC such as COPD may have erroneously led to the separation between LC and controls.(NCT02951416).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小羊硕采纳,获得10
刚刚
阿九完成签到,获得积分10
1秒前
1秒前
令狐秋尽完成签到,获得积分10
2秒前
俏皮白云完成签到 ,获得积分10
3秒前
cdercder应助吉小聿采纳,获得20
3秒前
keyan发布了新的文献求助10
4秒前
六沉完成签到,获得积分10
4秒前
霍楠完成签到,获得积分10
5秒前
篮孩子完成签到,获得积分10
8秒前
xfwang完成签到,获得积分10
8秒前
江边鸟完成签到 ,获得积分10
9秒前
斯文的酒窝完成签到,获得积分10
9秒前
充电宝应助六沉采纳,获得10
11秒前
赟yun完成签到,获得积分10
13秒前
13秒前
西西弗完成签到 ,获得积分10
15秒前
玛雅太阳神完成签到,获得积分10
15秒前
开心的太清完成签到,获得积分10
16秒前
wy0409完成签到,获得积分10
16秒前
bigfish完成签到,获得积分10
17秒前
Alger完成签到,获得积分10
17秒前
LILI完成签到,获得积分10
18秒前
完美世界应助水博士采纳,获得10
18秒前
马上动起来完成签到,获得积分10
18秒前
感动的老虎完成签到,获得积分10
19秒前
小羊硕发布了新的文献求助10
20秒前
孔乙己完成签到,获得积分10
21秒前
金鸡奖完成签到,获得积分20
21秒前
SCIER完成签到,获得积分10
23秒前
23秒前
泽锦臻完成签到 ,获得积分10
23秒前
yzxzdm完成签到 ,获得积分10
25秒前
大模型应助m123采纳,获得10
26秒前
26秒前
27秒前
点墨完成签到 ,获得积分10
27秒前
cdercder应助金鸡奖采纳,获得10
28秒前
有魅力勒完成签到,获得积分10
28秒前
老迟到的幼枫完成签到,获得积分10
29秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811789
求助须知:如何正确求助?哪些是违规求助? 3356092
关于积分的说明 10379425
捐赠科研通 3073158
什么是DOI,文献DOI怎么找? 1688205
邀请新用户注册赠送积分活动 811866
科研通“疑难数据库(出版商)”最低求助积分说明 766893