纳米颗粒
纳米技术
石墨烯
电解质
表面工程
纳米材料
材料科学
煅烧
电催化剂
催化作用
化学
化学工程
电化学
电极
物理化学
工程类
生物化学
作者
Xiaofeng Zhang,Xiaocui Li,Zhangweihao Pan,Yongjian Lai,Yang Lü,Yi Wang,Shuqin Song
标识
DOI:10.1016/j.cej.2021.131524
摘要
Abstract Developing new strategy to further improve hydrogen evolution reaction (HER) performance of transition metal-based electrocatalysts is of high significance to accelerate commercial application of hydrogen energy. Here, HER activity is significantly enhanced through introducing crystal defects. The combined methods of heat and cool shock calcination, mask fiber templates as both reducing agent and carbon source were applied to synthesize microtube-like electrocatalysts composed of cross-linked carbon sheets and ultrafine Ni nanoparticles. The extensive active sites (edges, corners, steps, jaggies and strain) on the surface of Ni nanoparticles caused by grain surface, twin boundaries and stacking faults could synergically accelerate HER activity by optimizing adsorption capability of electrocatalysts and exposing atoms with high surface energy. Meanwhile, the defect-rich Ni nanoparticles wrapped by few-layer graphene are uniformly fixed on the conductive carbon network, which provides abundant diffusion channels for H2 and electrolyte, as well as effectively prevents Ni nanoparticles aggregation and avoids Ni grains being peeled off during long-term HER operation. As expected, the as-prepared electrocatalyst exhibits prominently improved electrocatalytic activity and admirable stability for HER. This work provides some innovatively technical insight in new-type catalysts development and defects engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI