Magnetic-Nanowaxberry-Based Simultaneous Detection of Exosome and Exosomal Proteins for the Intelligent Diagnosis of Cancer

外体 化学 适体 微泡 上皮细胞粘附分子 癌症生物标志物 癌症 纳米技术 分子生物学 生物化学 细胞 小RNA 基因 生物 遗传学 材料科学
作者
Lihua Ding,Lie Liu,Leiliang He,Clement Yaw Effah,Ruiying Yang,Dongxun Ouyang,Ningge Jian,Xia Liu,Yongjun Wu,Lingbo Qu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (45): 15200-15208 被引量:28
标识
DOI:10.1021/acs.analchem.1c03957
摘要

Exosome concentration and exosomal proteins are regarded as promising cancer biomarkers. Herein, a waxberry-like magnetic bead (magnetic-nanowaxberry) which has huge surface area and strong affinity was synthesized to couple with aptamer for exosome capture and recovery. Subsequently, we developed a fluorescent assay for the sensitive, accurate, and simultaneous quantification of exosome and cancer-related exosomal proteins [epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM)] by using triple-colored probes to recognize EGFR and EpCAM or spontaneously anchor to the lipid bilayer. In this design, the interference of soluble proteins can be avoided due to the dual recognition strategy. Moreover, the lipid-based quantification of exosome concentration can improve the accuracy. Besides, the simultaneous detection mode can save samples and simplify the operation steps. Consequently, the assay shows high sensitivity (the limits of detection are down to 0.96 pg/mL for EGFR, 0.19 pg/mL for EpCAM, and 2.4 × 104 particles/μL for exosome), high specificity, and satisfactory accuracy. More importantly, this technique is successfully used to analyze exosomes in plasma to distinguish cancer patients from healthy individuals. To improve the diagnostic efficacy, the deep learning was used to exploit the potential pattern hidden in data obtained by the proposed method. Also, the accuracy for the intelligent diagnosis of cancer can achieve 96.0%. This study provides a new avenue for developing new biosensors for exosome analysis and intelligent disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小郭呀完成签到,获得积分10
2秒前
李健应助大G采纳,获得10
2秒前
Lijia_YAO发布了新的文献求助10
2秒前
奔跑的青霉素完成签到 ,获得积分10
3秒前
雨点发布了新的文献求助10
3秒前
汤元完成签到 ,获得积分10
6秒前
6秒前
小北发布了新的文献求助10
6秒前
Rayoo发布了新的文献求助30
7秒前
贪玩语蓉完成签到,获得积分10
9秒前
坚强的雁蓉完成签到 ,获得积分10
9秒前
10秒前
10秒前
SYT完成签到,获得积分10
12秒前
鱼仔完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
欧耶欧椰完成签到 ,获得积分10
16秒前
16秒前
BK完成签到,获得积分20
16秒前
杨德凯发布了新的文献求助10
17秒前
18秒前
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得30
20秒前
六个核桃完成签到,获得积分10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
shiqiang mu应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
pcr163应助科研通管家采纳,获得100
21秒前
华仔应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
冰魂应助科研通管家采纳,获得30
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
MnO2fff应助科研通管家采纳,获得20
21秒前
ECUST应助科研通管家采纳,获得10
21秒前
zn315315完成签到,获得积分10
21秒前
万能图书馆应助Cc采纳,获得30
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864197
求助须知:如何正确求助?哪些是违规求助? 3406469
关于积分的说明 10650161
捐赠科研通 3130470
什么是DOI,文献DOI怎么找? 1726408
邀请新用户注册赠送积分活动 831730
科研通“疑难数据库(出版商)”最低求助积分说明 779992