已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

238 Meta-analysis on the incidence of hyperprogressive disease during immune checkpoint inhibitor therapy

彭布罗利珠单抗 无容量 阿替唑单抗 易普利姆玛 杜瓦卢马布 医学 内科学 阿维鲁单抗 入射(几何) 免疫疗法 荟萃分析 子群分析 肿瘤科 癌症 光学 物理
作者
Seung Pyo Hong,Min Jeong Kim,Allison Belette,Youjin Oh,Sukjoo Cho,Young Kwang Chae
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:9 (Suppl 2): A254-A256
标识
DOI:10.1136/jitc-2021-sitc2021.238
摘要

Background Hyperprogressive disease (HPD) is a distinct pattern of rapid tumor progression observed in patients with cancer who are undergoing immune checkpoint inhibitor therapy. Despite the growing evidence, a universal definition of HPD remains to be established, and incidence rates vary based on the defining criteria. Therefore, a refinement of currently existing criteria is warranted to better characterize this phenomenon and evaluate its incidence. Methods Two independent investigators performed a systematic literature search in EMBASE and MEDLINE using keywords selected in Park et al. 1 : checkpoint, immunotherapy, pd1, pdl1, ctla4, ipilimumab, nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab and hyperprogress. Studies published from March 3, 2020 to April 20, 2020 that included the incidence and definition of HPD in patients receiving immunotherapy were included for analysis. Selected studies were then combined with those included in the meta-analysis by Park et al. 1 Duplicates were removed, and the study with a larger cohort was selected in instances of overlap between two cohorts. In total, 50 studies were included for meta-analysis. 2–51 Pooled incidence rates of HPD and prespecified subgroup analyses based on four categories defining HPD (tumor growth rate ratio, tumor growth kinetics ratio, early tumor burden increase, and combination) were obtained with 95% confidence intervals (CI) using a random effects model performed on R. Results A total of 6009 patients from 50 studies were included in the meta-analysis. Incidences varied from 0.0% to 43.1% (figure 1), and the overall pooled incidence of HPD was 12.9% (95%CI, 11.1%–14.7%). Significant heterogeneity was observed (I2= 77%; p<0.01). Studies were also grouped into one of 4 categories (table 1) based on the definition of HPD used to calculate the tumor growth acceleration: tumor growth rate ratio (pooled incidence of HPD 10.5%; 95% CI, 7.9%–13.0%), tumor growth kinetics ratio (pooled incidence, 14.8%; 95% CI, 12.0%–17.5%), early tumor burden increase (pooled incidence, 17.2%; 95% CI, 9.7%–24.7%), and combinations of the above (pooled incidence, 12.2%; 95% CI, 9.2%–15.2%). Abstract 238 Table 1 Subgroup analyses based on definitions of HPD Abbreviation TGR, tumor growth rate; TGK, tumor growth kinetics. Abstact 238 Figure 1 Overall pooled incidence of HPD. The overall pooled incidence of HPD was 12.9% (95% CI, 11.1%–14.7%). Significant heterogeneity was observed (I2 = 77%; p<0.01). Conclusions The overall incidence of HPD from 50 studies was 12.9% (95%CI, 11.1%–14.7%). HPD incidence varied from 0% to 43.1% depending on the definition each investigator chose. There is a growing need for a more uniform definition of HPD that does not underestimate or overestimate its incidence. References Park HJ, Kim KW, Won SE, et al . Definition, incidence, and challenges for assessment of hyperprogressive disease during cancer treatment with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Netw Open 2021; 4 (3):1–16. doi:10.1001/jamanetworkopen.2021.1136 Champiat S, Dercle L, Ammari S, et al . Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 2017; 23 (8):1920–1928. doi:10.1158/1078-0432.CCR-16-1741 Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res 2017; 23 (15):4242–4250. doi:10.1158/1078-0432.CCR-16-3133 Saâda-Bouzid E, Defaucheux C, Karabajakian A, et al . Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 2017; 28 (7):1605–1611. doi:10.1093/annonc/mdx178 Ferrara R, Mezquita L, Texier M, et al . Comparison of fast-progression, hyperprogressive disease, and early deaths in advanced non–small-cell lung cancer treated with PD-1/PD-L1 inhibitors or chemotherapy. JCO Precis Oncol 2020;(4):829–840. doi:10.1200/po.20.00021 Abbas W, Rao RR, Popli S. Hyperprogression after immunotherapy. South Asian J Cancer 2019; 08 (04):244–246. doi:10.4103/sajc.sajc_389_18 Aoki M, Shoji H, Nagashima K, et al . Hyperprogressive disease during nivolumab or irinotecan treatment in patients with advanced gastric cancer. ESMO Open 2019; 4 (3):1–10. doi:10.1136/esmoopen-2019-000488 Hwang I, Park I, Yoon S kyo, Lee JL. Hyperprogressive disease in patients with urothelial carcinoma or renal cell carcinoma treated with PD-1/PD-L1 inhibitors. Clin Genitourin Cancer 2020; 18 (2):e122-e133. doi:10.1016/j.clgc.2019.09.009 Kamada T, Togashi Y, Tay C, et al . PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 2019; 116 (20):9999–10008. doi:10.1073/pnas.1822001116 Kanjanapan Y, Day D, Wang L, et al . Hyperprogressive disease in early-phase immunotherapy trials: clinical predictors and association with immune-related toxicities. Cancer 2019; 125 (8):1341–1349. doi:10.1002/cncr.31999 Kim CG, Kim KH, Pyo KH, et al . Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol 2019; 30 (7):1104–1113. doi:10.1093/annonc/mdz123 Kim Y, Kim CH, Lee HY, et al . Comprehensive clinical and genetic characterization of hyperprogression based on volumetry in advanced non–small cell lung cancer treated with immune checkpoint inhibitor. J Thorac Oncol 2019; 14 (9):1608–1618. doi:10.1016/j.jtho.2019.05.033 Russo G Lo, Moro M, Sommariva M, et al . Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res 2019; 25 (3):989–999. doi:10.1158/1078-0432.CCR-18-1390 Lu Z, Zou J, Hu Y, et al . Serological markers associated with response to immune checkpoint blockade in metastatic gastrointestinal tract cancer. JAMA Netw Open 2019; 2 (7):1–15. doi:10.1001/jamanetworkopen.2019.7621 Matos I, Martin-Liberal J, García-Ruiz A, et al . Capturing hyperprogressive disease with immune-checkpoint inhibitors using RECIST 1.1 criteria. Clin Cancer Res 2020; 26 (8):1846–1855. doi:10.1158/1078–0432.CCR-19-2226 Sasaki A, Nakamura Y, Mishima S, et al . Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer 2019; 22 (4):793–802. doi:10.1007/s10120-018-00922-8 Scheiner B, Kirstein MM, Hucke F, et al . Programmed cell death protein-1 (PD-1)-targeted immunotherapy in advanced hepatocellular carcinoma: efficacy and safety data from an international multicentre real-world cohort. Aliment Pharmacol Ther 2019; 49 (10):1323–1333. doi:10.1111/apt.15245 Ten Berge DMHJ, Hurkmans DP, den Besten I, et al . Tumour growth rate as a tool for response evaluation during PD-1 treatment for non-small cell lung cancer: a retrospective analysis. ERJ Open Res 2019; 5 (4):00179–02019. doi:10.1183/23120541.00179-2019 Tunali I, Gray JE, Qi J, et al . Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer 2019; 129 :75–79. doi:10.1016/j.lungcan.2019.01.010 Arasanz H, Zuazo M, Bocanegra A, et al . Early detection of hyperprogressive disease in non-small cell lung cancer by monitoring of systemic T cell dynamics. Cancers (Basel) 2020; 12 (2):1–14. doi:10.3390/cancers12020344 Forschner A, Hilke FJ, Bonzheim I, et al . MDM2, MDM4 and EGFR amplifications and hyperprogression in metastatic acral and mucosal melanoma. Cancers (Basel) 2020; 12 (3). doi:10.3390/cancers12030540 Petrioli R, Mazzei MA, Giorgi S, et al . Hyperprogressive disease in advanced cancer patients treated with nivolumab: a case series study. Anticancer Drugs . Published online 2020:190–195. doi:10.1097/CAD.0000000000000864 Refae S, Gal J, Brest P, et al . Author correction: hyperprogression under immune checkpoint inhibitor: a potential role for germinal immunogenetics (Scientific Reports, (2020), 10, 1, (3565), 10.1038/s41598-020-60437-0). Sci Rep 2020; 10 (1):1–8. doi:10.1038/s41598-020-66841-w Ruiz-Patiño A, Arrieta O, Cardona AF, et al . Immunotherapy at any line of treatment improves survival in patients with advanced metastatic non-small cell lung cancer (NSCLC) compared with chemotherapy (Quijote-CLICaP). Thorac Cancer 2020; 11 (2):353–361. doi:10.1111/1759-7714.13272 Kim CG, Kim C, Yoon SE, et al . Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma. J Hepatol 2021; 74 (2):350–359. doi:10.1016/j.jhep.2020.08.010 Kas B, Talbot H, Ferrara R, et al . Clarification of definitions of hyperprogressive disease during immunotherapy for non-small cell lung cancer. JAMA Oncol 2020; 6 (7):1039–1046. doi:10.1001/jamaoncol.2020.1634 Jin T, Zhang Q, Jin QF, Hua YH, Chen XZ. Anti-PD1 checkpoint inhibitor with or without chemotherapy for patients with recurrent and metastatic nasopharyngeal carcinoma. Transl Oncol 2021; 14 (2):100989. doi:10.1016/j.tranon.2020.100989 Rimola J, Da Fonseca LG, Sapena V, et al . Radiological response to nivolumab in patients with hepatocellular carcinoma: a multicenter analysis of real-life practice. Eur J Radiol 2021; 135 (December 2020). doi:10.1016/j.ejrad.2020.109484 Gomes da Morais AL, de Miguel M, Cardenas JM, Calvo E. Comparison of radiological criteria for hyperprogressive disease in response to immunotherapy. Cancer Treat Rev 2020; 91 (September). doi:10.1016/j.ctrv.2020.102116 Schuiveling M, Tonk EHJ, Verheijden RJ, Suijkerbuijk KPM. Hyperprogressive disease rarely occurs during checkpoint inhibitor treatment for advanced melanoma. Cancer Immunol Immunother 2021; 70 :1491-1496. doi:10.1007/s00262-020-02716-3 31. Yilmaz M. Atypical response patterns in metastatic melanoma and renal cell carcinoma patients treated with nivolumab: a single center experience. J Oncol Pharm Pract 2021; 27 (5):1106–1111. doi:10.1177/1078155220949642 Kim SH, Choi CM, Lee DH, et al . Clinical outcomes of nivolumab in patients with advanced non-small cell lung cancer in real-world practice, with an emphasis on hyper-progressive disease. J Cancer Res Clin Oncol 2020; 146 (11):3025–3036. doi:10.1007/s00432-020-03293-9 Ji Z, Cui Y, Peng Z, et al . Use of radiomics to predict response to immunotherapy of malignant tumors of the digestive system. Med Sci Monit 2020; 26 :1–9. doi:10.12659/MSM.924671 Petrova MP, Donev IS, Radanova MA, et al . Sarcopenia and high NLR are associated with the development of hyperprogressive disease after second-line pembrolizumab in patients with non-small-cell lung cancer. Clin Exp Immunol 2020; 202 (3):353–362. doi:10.1111/cei.13505 Zheng B, Shin JH, Li H, Chen Y, Guo Y, Wang M. Comparison of radiological tumor response based on iRECIST and RECIST 1.1 in metastatic clear-cell renal cell carcinoma patients treated with programmed cell death-1 inhibitor therapy. Korean J Radiol 2021; 22 (3):366–375. doi:10.3348/kjr.2020.0404 Karabajakian A, Garrivier T, Crozes C, et al . Hyperprogression and impact of tumor growth kinetics after PD1/PDL1 inhibition in head and neck squamous cell carcinoma. Oncotarget 2020; 11 (18):1618–1628. doi:10.18632/oncotarget.27563 Park JH, Chun SH, Lee YG, et al . Hyperprogressive disease and its clinical impact in patients with recurrent and/or metastatic head and neck squamous cell carcinoma treated with immune-checkpoint inhibitors: Korean cancer study group HN 18–12. J Cancer Res Clin Oncol 2020;(0123456789). doi:10.1007/s00432-020-03316-5 Vaidya P, Bera K, Patil PD, et al . Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J Immunother Cancer 2020; 8 (2). doi:10.1136/jitc-2020-001343 Abbar B, De Castelbajac V, Gougis P, et al . Definitions, outcomes, and management of hyperprogression in patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. Lung Cancer 2021; 152 (December 2020):109–118. doi:10.1016/j.lungcan.2020.12.026 Choi YJ, Kim T, Kim EY, Lee SH, Kwon DS, Chang YS. Prediction model for hyperprogressive disease in non-small cell lung cancer treated with immune checkpoint inhibitors. Thorac Cancer 2020; 11 (10):2793–2803. doi:10.1111/1759-7714.13594 Castello A, Rossi S, Mazziotti E, Toschi L, Lopci E. Hyperprogressive disease in patients with non-small cell lung cancer treated with checkpoint inhibitors: the role of 18F-FDG PET/CT. J Nucl Med 2020; 61 (6):821–826. doi:10.2967/jnumed.119.237768 Nakamoto R, C Zaba L, Rosenberg J, et al . Imaging characteristics and diagnostic performance of 2-deoxy-2-[18F]fluoro-d-Glucose PET/CT for melanoma patients who demonstrate hyperprogressive disease when treated with immunotherapy. Mol Imaging Biol 2021; 23 (1):139–147. doi:10.1007/s11307-020-01526-4 Zhang L, Wu L, Chen Q, et al. Predicting hyperprogressive disease in patients with advanced hepatocellular carcinoma treated with anti-programmed cell death 1 therapy. EClinicalMedicine 2021; 31 :100673. doi:10.1016/j.eclinm.2020.100673 Matsuo N, Azuma K, Kojima T, et al . Comparative incidence of immune-related adverse events and hyperprogressive disease in patients with non-small cell lung cancer receiving immune checkpoint inhibitors with and without chemotherapy. Invest New Drugs Published online 2021. doi:10.1007/s10637-021-01069-7 Economopoulou P, Anastasiou M, Papaxoinis G, et al . Patterns of response to immune checkpoint inhibitors in association with genomic and clinical features in patients with head and neck squamous cell carcinoma (HNSCC). Cancers (Basel) 2021; 13 (2):1–15. doi:10.3390/cancers13020286 Kim SR, Chun SH, Kim JR, et al . The implications of clinical risk factors, CAR index, and compositional changes of immune cells on hyperprogressive disease in non-small cell lung cancer patients receiving immunotherapy. BMC Cancer 2021; 21 (1):1–11. doi:10.1186/s12885-020-07727-y Hagi T, Kurokawa Y, Kawabata R, et al . Multicentre biomarker cohort study on the efficacy of nivolumab treatment for gastric cancer. Br J Cancer 2020; 123 (6):965–972. doi:10.1038/s41416-020-0975-7 Okamoto I, Sato H, Tsukahara K. Overall survival and PD-L1 expression in patients with recurrent or metastatic head and neck cancer treated with nivolumab. Auris Nasus Larynx 2020; 47 (4):676–686. doi:10.1016/j.anl.2020.04.001 Kim KH, Hur JY, Koh J, et al . Immunological characteristics of hyperprogressive disease in patients with non-small cell lung cancer treated with anti-pd-1/pd-l1 abs. Immune Netw 2020; 20 (6):1–11. doi:10.4110/in.2020.20.e48 Ku BM, Kim Y, Lee KY, et al . Tumor infiltrated immune cell types support distinct immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. Eur J Immunol Published online 2021:1–9. doi:10.1002/eji.202048966 Miyama Y, Morikawa T, Miyakawa J, et al . Squamous differentiation is a potential biomarker predicting tumor progression in patients treated with pembrolizumab for urothelial carcinoma. Pathol Res Pract 2021; 219 (February):153364. doi:10.1016/j.prp.2021.153364
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘牡娟完成签到,获得积分10
1秒前
llllissa完成签到,获得积分10
3秒前
任性大米完成签到 ,获得积分10
4秒前
崔洪瑞发布了新的文献求助10
4秒前
大眼的平松完成签到,获得积分10
6秒前
yangyajie发布了新的文献求助10
9秒前
9秒前
JamesPei应助11采纳,获得10
9秒前
派小星完成签到,获得积分10
10秒前
直率芮完成签到 ,获得积分10
10秒前
都会完成签到 ,获得积分10
13秒前
xuhaoo0125发布了新的文献求助10
15秒前
18秒前
碧蓝可仁完成签到 ,获得积分10
21秒前
完美梨愁完成签到 ,获得积分10
24秒前
歪歪yyyyc完成签到,获得积分10
24秒前
qqqqqqq77完成签到 ,获得积分10
25秒前
32秒前
科研通AI5应助yangyajie采纳,获得10
33秒前
34秒前
Milo完成签到,获得积分10
38秒前
Kevin完成签到,获得积分10
38秒前
39秒前
沉默寻凝完成签到,获得积分10
41秒前
42秒前
学术通zzz发布了新的文献求助10
44秒前
酷酷的笔记本应助遗忘采纳,获得20
45秒前
48秒前
几米完成签到 ,获得积分10
48秒前
49秒前
qi完成签到 ,获得积分10
51秒前
禾斗石开发布了新的文献求助10
54秒前
沉默白猫完成签到 ,获得积分10
55秒前
不辣的完成签到 ,获得积分10
56秒前
tgd完成签到,获得积分10
57秒前
ffff完成签到 ,获得积分10
58秒前
狂野的含烟完成签到 ,获得积分10
58秒前
Swear完成签到 ,获得积分10
59秒前
与一完成签到 ,获得积分10
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815663
求助须知:如何正确求助?哪些是违规求助? 3359277
关于积分的说明 10401860
捐赠科研通 3077021
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694