Ti3C2T /carbon nanotube/porous carbon film for flexible supercapacitor

超级电容器 材料科学 碳纳米管 纳米技术 多孔性 堆积 电容 碳纤维 电极 复合材料 复合数 化学 物理化学 有机化学
作者
Kai Yang,Min Luo,Daotong Zhang,Chaozheng Liu,Zhao Li,Liangcai Wang,Weimin Chen,Xiaoyan Zhou
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:427: 132002-132002 被引量:134
标识
DOI:10.1016/j.cej.2021.132002
摘要

Porous carbon (PC) can effectively alleviate the typical self-stacking phenomenon of 2D MXene-based films as a spacer, and can easily customize their porous structure. Nevertheless, the contact between 3D PC and 2D MXene flakes is generally presented at a point-to-point form owing to the irregular shape of PC, leading to a low efficiency on electron delivery and stress concentration with a fragile characteristic in the resulting films. Herein, 1D carbon nanotube (CNT) was introduced to construct a highly conductive net structure, tightly anchoring PC on MXene flakes, thus ensuring fast electron delivery by increasing the contact area between MXene and PC. Additionally, the interwoven CNTs bridge the horizontal MXene flakes, making internal structure more integral, thereby enhancing the flexibility. Consequently, the Ti3C2Tx (a typical MXene)/CNT/PC (TCP) film has an ability to bear a large scan rate of 1 V s−1 and shows a high areal specific capacitance of 364.8 mF cm−2 at 0.5 mA cm−2 which remains above 80% even at a high current density of 50 mA cm−2. Furthermore, the fabricated flexible quasi-solid-state supercapacitor (SC) demonstrates a large areal energy density of 10.5 μ Wh cm−2 at 29.8 μ W cm−2. This study provides a promising approach to overcome the poor flexibility of MXene/PC film without sacrificing the conductivity, meanwhile paving a way for the development of flexible SCs with large charge storage capacity and high rate capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vkey完成签到,获得积分10
刚刚
无花果关注了科研通微信公众号
1秒前
柚子应助能干苑睐采纳,获得10
3秒前
淡定妙海发布了新的文献求助10
5秒前
5秒前
GYH完成签到,获得积分10
7秒前
9秒前
12秒前
霏冉完成签到,获得积分10
15秒前
Jaikaran完成签到,获得积分10
15秒前
云深不知妖完成签到 ,获得积分10
16秒前
时与远方发布了新的文献求助10
16秒前
17秒前
无花果发布了新的文献求助10
17秒前
18秒前
19秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
bunny发布了新的文献求助10
25秒前
Swin发布了新的文献求助10
25秒前
隐官大人发布了新的文献求助10
27秒前
Amy完成签到 ,获得积分10
29秒前
淡定妙海发布了新的文献求助10
29秒前
Swin完成签到,获得积分10
29秒前
perfect完成签到 ,获得积分10
31秒前
Yuuuu完成签到 ,获得积分10
33秒前
高晨焜完成签到,获得积分10
34秒前
35秒前
科研通AI5应助shuaxin456采纳,获得10
36秒前
852应助高晨焜采纳,获得10
38秒前
38秒前
silence完成签到,获得积分10
40秒前
Julo发布了新的文献求助10
41秒前
风一样的我完成签到 ,获得积分10
41秒前
43秒前
44秒前
充电宝应助jianguo采纳,获得10
45秒前
Orange应助silence采纳,获得10
45秒前
46秒前
李爱国应助yusuf采纳,获得30
47秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212653
求助须知:如何正确求助?哪些是违规求助? 3746898
关于积分的说明 11789305
捐赠科研通 3414479
什么是DOI,文献DOI怎么找? 1873737
邀请新用户注册赠送积分活动 928097
科研通“疑难数据库(出版商)”最低求助积分说明 837403