SpaSSA: Superpixelwise Adaptive SSA for Unsupervised Spatial–Spectral Feature Extraction in Hyperspectral Image

高光谱成像 模式识别(心理学) 人工智能 特征提取 主成分分析 计算机科学 特征(语言学) 嵌入 图像(数学) 计算复杂性理论 数学 算法 语言学 哲学
作者
Guifan Sun,Hang Fu,Jinchang Ren,Aizhu Zhang,Jaime Zabalza,Xiuping Jia,Huimin Zhao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 6158-6169 被引量:28
标识
DOI:10.1109/tcyb.2021.3104100
摘要

Singular spectral analysis (SSA) has recently been successfully applied to feature extraction in hyperspectral image (HSI), including conventional (1-D) SSA in spectral domain and 2-D SSA in spatial domain. However, there are some drawbacks, such as sensitivity to the window size, high computational complexity under a large window, and failing to extract joint spectral-spatial features. To tackle these issues, in this article, we propose superpixelwise adaptive SSA (SpaSSA), that is superpixelwise adaptive SSA for exploiting local spatial information of HSI. The extraction of local (instead of global) features, particularly in HSI, can be more effective for characterizing the objects within an image. In SpaSSA, conventional SSA and 2-D SSA are combined and adaptively applied to each superpixel derived from an oversegmented HSI. According to the size of the derived superpixels, either SSA or 2-D singular spectrum analysis (2D-SSA) is adaptively applied for feature extraction, where the embedding window in 2D-SSA is also adaptive to the size of the superpixel. Experimental results on the three datasets have shown that the proposed SpaSSA outperforms both SSA and 2D-SSA in terms of classification accuracy and computational complexity. By combining SpaSSA with the principal component analysis (SpaSSA-PCA), the accuracy of land-cover analysis can be further improved, outperforming several state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwill应助xinyuY采纳,获得20
1秒前
gcl_wzf应助math采纳,获得30
2秒前
3秒前
竹峪卿完成签到,获得积分10
4秒前
hahhhhhh2完成签到,获得积分10
4秒前
坚强的蚂蚁完成签到,获得积分10
6秒前
world发布了新的文献求助10
6秒前
旅行的天空完成签到,获得积分10
8秒前
8秒前
娇气的芷巧完成签到 ,获得积分10
9秒前
Jasper应助忧伤的尔白采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
科目三应助元炫采纳,获得10
13秒前
斯文的小旋风应助哈哈哈采纳,获得20
14秒前
14秒前
樊舒豪发布了新的文献求助10
15秒前
谨慎忆安完成签到,获得积分20
15秒前
完美世界应助liysh采纳,获得10
17秒前
18秒前
18秒前
19秒前
11632发布了新的文献求助30
19秒前
Kaia发布了新的文献求助10
19秒前
fengchen发布了新的文献求助10
20秒前
20秒前
20秒前
下载不到文献的可怜人完成签到 ,获得积分20
22秒前
个性凡儿发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
lalalala发布了新的文献求助10
24秒前
潮哈哈耶发布了新的文献求助10
24秒前
YiWei发布了新的文献求助10
25秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794649
求助须知:如何正确求助?哪些是违规求助? 3339446
关于积分的说明 10296040
捐赠科研通 3056142
什么是DOI,文献DOI怎么找? 1676904
邀请新用户注册赠送积分活动 804932
科研通“疑难数据库(出版商)”最低求助积分说明 762216