Graph2MDA: a multi-modal variational graph embedding model for predicting microbe–drug associations

计算机科学 自编码 机器学习 人工智能 分类器(UML) 图形 聚类分析 药品 图嵌入 计算生物学
作者
Lei Deng,Yibiao Huang,Xuejun Liu,Hui Liu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (4): 1118-1125
标识
DOI:10.1093/bioinformatics/btab792
摘要

Abstract Motivation Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Therefore, screening of microbe–drug associations can benefit greatly drug research and development. With the increase of microbial genomic and pharmacological datasets, we are greatly motivated to develop an effective computational method to identify new microbe–drug associations. Results In this article, we proposed a novel method, Graph2MDA, to predict microbe–drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular structures, microbe genetic sequences and function annotations. Taking as input the multi-modal attribute graphs, VGAE was trained to learn the informative and interpretable latent representations of each node and the whole graph, and then a deep neural network classifier was used to predict microbe–drug associations. The hyperparameter analysis and model ablation studies showed the sensitivity and robustness of our model. We evaluated our method on three independent datasets and the experimental results showed that our proposed method outperformed six existing state-of-the-art methods. We also explored the meaning of the learned latent representations of drugs and found that the drugs show obvious clustering patterns that are significantly consistent with drug ATC classification. Moreover, we conducted case studies on two microbes and two drugs and found 75–95% predicted associations have been reported in PubMed literature. Our extensive performance evaluations validated the effectiveness of our proposed method. Availability and implementation Source codes and preprocessed data are available at https://github.com/moen-hyb/Graph2MDA. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11235完成签到 ,获得积分10
刚刚
2秒前
大志完成签到,获得积分20
6秒前
发文章12138完成签到,获得积分10
7秒前
MGQQbg完成签到,获得积分10
7秒前
7秒前
细心书包完成签到,获得积分10
8秒前
lishi完成签到,获得积分10
10秒前
ya完成签到,获得积分10
10秒前
11秒前
乐乐完成签到,获得积分10
11秒前
13秒前
Jue发布了新的文献求助10
13秒前
美丽的果汁完成签到 ,获得积分10
13秒前
舒婷完成签到 ,获得积分10
15秒前
15秒前
zjrh发布了新的文献求助10
15秒前
xueluxin完成签到 ,获得积分10
17秒前
李健应助绿色心情采纳,获得10
18秒前
18秒前
本恩宁完成签到 ,获得积分10
21秒前
21秒前
24秒前
kgrvlm完成签到 ,获得积分10
25秒前
Lucas应助halo采纳,获得10
25秒前
26秒前
华仔应助yy采纳,获得10
26秒前
张一完成签到 ,获得积分10
27秒前
zjrh完成签到,获得积分10
28秒前
白桃战士发布了新的文献求助10
29秒前
lxy发布了新的文献求助10
30秒前
30秒前
30秒前
30秒前
少侠饶命完成签到 ,获得积分10
32秒前
陈磨磨磨完成签到,获得积分10
34秒前
考前刷夜完成签到,获得积分10
34秒前
34秒前
深情安青应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898